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EXECUTIVE SUMMARY

It appears inevitable that the aerospace industry, as well as many other industries, will eventually
incorporate probabilistic analysis methods to some degree.  Probabilistic structural analysis
methods, unlike traditional methods, provide a means to quantify the inherent risk of a design
and to quantify the sensitivities of design variables.  The degree to which these methods are
successfully applied depends on addressing the issues and concerns discussed in this report.
Certainly, one issue is to disseminate familiarity and basic understanding of this technology.

This report is intended to introduce the subject of probabilistic analysis (also known as
probabilistic design) to engineers in the aerospace industry as well as act as a reference to guide
those applying this technology.  The level of mathematical complexity is aimed at those with
limited statistical training; numerous references are given throughout that point to more elaborate
details of the methods.

Section 1 of this report explains shortcomings of the current structural analysis approach and the
potential for improvement via incorporation of probabilistic analysis methods.  The evolution of
probabilistic analysis is given in section 2, dating back to the 1940’s when A.G. Pugsley first
proposed correlating loads and strengths with structural accident rates.  The basic theory of
probabilistic analysis is discussed and explained via examples in section 3, and the four major
techniques (integration, simulation, response surface, and limit state approximation) for
assessing structural reliability are introduced.

Section 4 tells who has been using the probabilistic approach and lists specific design analysis
applications.  An in-depth look at one industry method (Northrop Grumman Commercial
Aircraft Division) is given in section 5.  A consensus on the benefits and limitations of the
probabilistic approach from numerous authors who have published technical reports in the field
is presented in sections 6 and 7, respectively.
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1.  INTRODUCTION.

Knowing the inherent risk of failure in any design is becoming increasingly important to both the
manufacturer and the customer.  Designers and management must concern themselves with the
ability to assess risk, identify parameters which drive risk, and minimize the risk given other
program constraints.  Analysis of aircraft structure using probabilistic methods provides a tool
for meeting these needs.

This section begins with an overview of the current structural analysis approach, expounding on
its shortcomings and listing potential dilemmas in applying the approach to future aerospace
designs.   The general probabilistic analysis approach is then explained, with discussion on how
it can address these problems.

1.1  CURRENT DETERMINISTIC STRUCTURAL DESIGN APPROACH.

At each location in the structure, a most severe state of stress occurs from some applied load
condition.  This stress is referred to as a limit stress, and the load causing it is a limit load.  The
“factor of uncertainty” (formerly known as the factor of safety) multiplies limit loads or stresses
to obtain design loads or stresses and is used to account for the possibility that an actual load will
exceed a predicted load or that the actual strength will be less than the expected strength.  This
factor, discussed in detail in section 2.2, has evolved from experience and operation of aerospace
vehicles.

The design criteria for a structure also specifies allowable strengths for the various materials
used.  Authorized mechanical properties of materials having a prescribed statistical basis are
presented in MIL-HDBK-5 for metals and MIL-HDBK-17 for composites.  The allowable
structural strength is determined from test data, either from a representative structure or from
tests on functionally similar structure.

Analysis performed by applying ultimate load to the structure modeled with the allowable
strengths yields “margins of safety” values at each location, which are usually optimized to
positive values close to zero.  A margin of safety of zero implies the ultimate load (1.5 x design
limit load) creates a stress that is equal to the resistive strength of the component.  Once the
analysis shows these margins to be acceptable, the deterministic design analysis is labeled a
success.  Static and fatigue tests are normally performed on the full structure to verify the
structure will not catastrophically fail under ultimate load and will endure a specified amount of
time under repeated or cyclical loading.

1.2  NEED FOR A DIFFERENT APPROACH.

Current aerospace design analysis methods do not directly account for the random nature of most
input parameters.  The result of treating parameters such as material properties, geometry,
environment, and loads as singly determined (deterministic) values is a design of unknown
reliability, or conversely, unknown risk.

Risk is defined as the chance of encountering harm or loss.  Virtually all activities, including air
travel, contain risk, but we are willing to accept the risk levels, given our life experience.  When
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we elect to participate in these activities, we accept the risk, either overtly or tacitly.  The
minimization of risk of aircraft structural failure has been handled in the design phase by the
application of factors of uncertainty and the use of judicious material properties.  The number of
aircraft accidents attributable to structural airframe component failure has been very low in the
past 30 years.  Yet a design process yielding unknown risk poses the following problems for
future designs:

• As designs grow more critical and competitive, there is a need to quantitatively assess
and optimize reliability (or minimize risk), given other program constraints.  Recent
military guidelines are emphasizing the importance of reliability on par with performance
and cost.  With an ever-increasing emphasis on warranties, both commercial and military,
quantified reliability is an essential feature.

• New aircraft developments (e.g., reusable launch vehicle, high-speed civil transport) are
departing dramatically from traditional environments.  Application of historical
uncertainty factors may not be sufficient to provide adequate safety.  Conversely, the
trend to design to all possible unfavorable events occurring simultaneously could produce
an unacceptable weight.

• The aerospace industry has seen a steady rise in the percentage of composite airframe
structures.  These materials have more intrinsic variables than metals due to their
heterogeneity and are subjected to more manufacturing process sources of variation.  To
account for uncertainties, relatively large knockdown factors are employed, which reduce
the material allowable.  This results in a substantial weight increase without a
quantifiable increase in structural reliability.

1.3  PHILOSOPHY OF PROBABILISTIC ANALYSIS.

All design parameters are treated as variables and the basic result from the analysis is a
probability of failure, or risk1.  The effect of realistic variability of the design input parameters
can thus be obtained.  Specifically, given the structural analysis methodology in conjunction with
statistical characterization of applied loading, geometry, material behavior, and expected
environment, the probabilistic structural analysis methodology is capable of producing:

• Safety (risk) quantification
• Design variable sensitivity analysis
• Cost/weight reduction scenarios
• Optimum inspection intervals

                                                
1 In this handbook, no distinction is made between the terms “probability of failure” and “risk.”  Actually, there is a
difference, in that probability of failure is associated with the quantitative measure of reliability, whereas risk
includes economic consequences of failure.  Because these considerations will not be addressed in the handbook, the
terms will be used interchangeably.
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Obviously, statistical definition of the design parameters must be developed very carefully, as
this is the crux of the analysis.  There must be a thorough understanding of the range and
variability of input values, particularly those which are risk sensitive, i.e., producing significant
changes in risk.  Statistical definition of these must be reviewed from the perspective of a wide
range of technologies.

Knowing each design parameter’s contribution to overall risk enables the engineer to know
where to look to improve reliability.  Manufacturing process controls can be tailored to focus on
parameters that have the most payoff in terms of overall reliability.  Of particular interest to
aircraft manufacturers is the ability to optimize weight of components for a given risk level.

1.4  GENERAL CONCEPT.

The foundation of probabilistic design involves basing design criteria on reliability targets
instead of deterministic criteria.  Design parameters such as applied loads, material strength, and
operational parameters are researched and/or measured, then statistically defined.  A
probabilistic analysis model is developed for the entire system and solutions performed to yield
failure probabilities.

The solution includes a number of locations and failure modes.  Each location requires
corresponding applied stress and material strength distributions.  The applied stress is usually
obtained from finite element modeling, coupled with conventional structural mechanics
approaches.  Mathematically, the applied stress and material strength distributions are generally
assumed to be independent.  The general concept is to integrate the joint probability of applied
stress and material strength over the region where stress exceeds strength. The result of this
integration is the probability of structural failure.

Sensitivity analysis and/or optimization can be performed once the probabilistic model has been
established.  The concept is that once design driver contributions are identified, the design can be
optimized for the given constraints, while maintaining the overall failure probability at an
acceptable level.  Sensitivity analysis reveals the major contributors to risk; this allows the
analyst to vary the design parameters to produce acceptable reliability at minimum weight, for
example.
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2.  HISTORY OF PROBABILISTIC DESIGN.

One author [1] suggests “the revolutionary concept separating modern times from the past is the
mastery of risk:  the notion that the future can be at the service of the present, and not a whim of
the gods.”  Serious study of risk began in the mid-1600s, when a French nobleman with a taste
for both gambling and mathematics challenged famed mathematician Pascal to solve a puzzle:
how to divide stakes of an unfinished game of chance (dice) when one player was ahead.  Pascal
turned to fellow mathematician Fermat and the outgrowth of their collaboration was the
discovery of probability theory.  For the first time, one could make decisions and forecast the
future with the help of numbers.  During the next 100 years, mathematicians such as Bernoulli
and Gauss developed probability theory into a powerful instrument for organizing and applying
information.

Probability has always carried a double meaning, one looking into the future and the other
interpreting the past; one concerned with our opinions and the other concerned with what we
actually know.  Oftentimes, what we think we know from the past is no longer applicable to the
present.  We are never certain, always ignorant to some degree, never knowing for sure how
good our sample is.  Given this, we must still strive to generate sample data in which we have
high confidence and is an accurate indicator of future behavior.

Today, the challenge to aircraft designers and analysts is to accurately define what data is
obtainable, assess the degree of confidence to which these data apply to the current situation,
statistically define the data, and predict performance.  One must accept the notion that there is a
finite (however small) probability of component failure.  A scientist who developed the Saturn 5
rocket put it this way: “You want a valve that doesn’t leak and try everything possible to develop
one.  But the real world provides you with a leaky valve.  You must determine how much leaking
you can tolerate.”  Similarly, we must determine levels of aircraft component failure we can
tolerate, in concert with manufacturing, economic, performance, etc., constraints.

2.1  PROBABILISTIC METHODOLOGY DEVELOPMENT.

The concept of probabilistic aircraft structural risk assessment has been around for quite some
time.  In 1942, A. G. Pugsley [2] (Great Britain) published “A Philosophy of Aeroplane Strength
Factors” to propose correlating loads and strengths with recorded structural accident rates.  He
states “By adopting the principle that neither design loads nor safety factors and permissible
stresses should be specified arbitrarily, it will be possible to not only eliminate inadequate
design, but frequently to achieve considerable economy.”

The following quotes are from Alfred Freudenthal (Civil Engineering professor) in his 1945
paper [3] The Safety of Structures:  “The true character of the safety factor is disclosed by the
introduction of a statistical concept of physical qualities, according to which the individual
properties composing strain and resistance are represented by frequency distributions, instead of
by individual values...  By application of the theory of probability, the concept of safety can be
rationalized.”  Freudenthal’s paper sparked international interest in structural safety; structural
reliability theory was discussed and formulations presented in papers [4] from British, French,
Spanish, and Swedish authors during the early 1950s.  The theory was fueled by Weibull’s
success (1951) in developing robust statistical representations of material strength.
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In 1954, Freudenthal [5] published “Safety and the Probability of Structural Failure” in which he
expanded the discussion of failure probability.  He realized a problem which still may exist to a
degree today: “...the concept of safety is deeply rooted in engineering design, whereas the notion
of finite (no matter how small) probability of failure is repulsive to a majority of engineers.”  In
discussions at the end of reference 5, Jose Corso and Larry Lawrence, fellow civil engineers,
carried the math one step further by simplifying the calculation of failure probability for the case
of normally distributed stress and strength.  This approach was the foundation of the First-Order
Reliability Method yielding the Safety Index and will be further discussed in section 3.

In 1956, the Task Committee on Factors of Safety, American Society of Chemical Engineers,
supported by the Office of Naval Research, Air Force Materials Laboratory, and Advanced
Research Projects Agency, was commissioned to (1) clearly define the term factor of safety; (2)
survey the field as to currently used factors; and (3) recommend forms and values of these
factors to be used in the future.  At the end of 10 years, the final report [6] conveyed a sense of
frustration:  “although the committee has not been successful in its efforts to resolve the ‘factor
of safety’ question, it is believed that the probability approach deserves considerably more study
than it has received.”

This final report defined the following needs of successful structural reliability analysis:
(1) improve load sequence representation; (2) describe failure conditions more realistically;
(3) define statistical variation of load and resistance (strength) with more confidence; and
(4) define design criteria taking reliability concepts into account.  Thus the exhortation was made
to conduct more research.

Although research continued during the 1960s, lack of acceptance seemed to be caused by the
perceived lack of a problem with using conventional methods.  The durability and damage
tolerance approach was recognized in the 1960s and adopted in the mid-1970s, based on fatigue
crack growth prediction laws; this seemed to allay safety concerns.  Probabilistic methods were
thought to require a mountain of data, and the payoff was not convincing.  One author stated
“Employing statistics and probability theory seemed to carry an aura of mystery for many
practicing engineers.”

In 1967, C.A. Cornell [7] proposed a second-moment format for evaluation of structural
reliability.  This approach generates a “safety index” calculated from the means and variances
(the variance is the second moment of a distribution) of the parameter distributions.  The safety
index is considered to be a measure of reliability, and is an alternative to numerically integrating
the joint probability density function to determine a probability of failure.  In 1973, Lind [8]
demonstrated that Cornell’s safety index could be used to derive safety factors on applied loads
and resistance.  This was a milestone; reliability analysis was at long last related to accepted
(civil engineering) methods of design.  Subsequent refinements were made by Hasofer and Lind
[9], whose method (1974) is considered to be the foundation of probabilistic design theory.

2.2  HISTORY OF THE SAFETY FACTOR [10].

As stated in section 1, the concept of the factor of safety is to provide a safe operating margin
between an operational level and a design level of strength.  Just how safe is unknown, however,
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because of the uncertainty in structural loads, design analysis, materials, operation, and
environment.

By the early 1930s, a factor of safety philosophy had evolved but had not been formalized.
Airplanes were flying at two-thirds of ultimate, it was agreed that permanent set was not
desirable, and permissible limit loads were being pushed as high as possible.  Introduction of the
V-G (velocity-acceleration) diagram, which establishes a relationship among design load factor,
maximum aerodynamic maneuver capability, and operational maneuver limits, helped rationalize
criteria for utilizing the factor of safety.  In March 1934, the 1.5 factor of safety became a formal
requirement of the Air Corps.  There was some thought that the 1.5 factor was derived from a
ratio of aluminum ultimate to yield stress, but this is just a coincidence which tended to support
the selection of 1.5.

This factor did not evolve as the result of some concentrated effort to derive a useful factor.
Rather, it evolved together with other design requirements as part of an overall desire to
rationalize structural design criteria.  Its use is accepted by most engineers without question.
When problems have arisen or structural failures have occurred, changes were made to design
specifications, load prediction techniques, manufacturing techniques, etc., but the factor of safety
value has never been changed.

The 1.5 factor is rational because it is based on what were considered to be representative ratios
of design to operating maneuver load factors experienced during the 1920s and 1930s.  Yet at the
same time it is arbitrary because we do not know the exact design, manufacturing, and operating
intricacies and variations it protects against or how to quantify them.  Neither can the degree of
inflight safety provided by the 1.5 factor be quantified; but its successful history cannot be
lightly dismissed.

Interest in replacing the factor of safety approach with probabilistic interpretations of structural
safety initiated in the late 1950s.  The continued application of the factor of safety approach is
challenged by some engineers, but there is reluctance to undergo a major change in design
philosophy, especially one which could encourage legal entanglements.  The factor of safety still
covers many unknown contingencies, and for this reason, some engineers believe there will
always be a need for some such factor.

Recently, the factor of safety was renamed to “factor of uncertainty.”  A draft (June 1995) of the
Joint Service Structures Specification Handbook states “The selection of the factor of
uncertainty, formerly called the factor of safety, should be made by assessing the factors that
have been used on similar air vehicles performing similar missions.  The value for manned
aircraft has been 1.5....  The selected value of the factor of uncertainty should be increased to
account for above normal uncertainty in the design, analysis, and fabrication methods when the
inspection methods have reduced accuracy or are limited by new materials and fabrication
methods and where the usage of the air vehicle is significantly different....  The use of reduced
factors of uncertainty needs to be carefully defined and justified.”

If variability in design, manufacturing, and operating environments can be reduced, then a
reduction of the 1.5 factor of uncertainty could be justified.  If, however, the introduction of new
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material systems (for example) actually increases the variability, then the 1.5 factor may be
unconservative and have to be increased.  In either case, probabilistic analysis can be used to
quantify these effects, hence serving a useful purpose.  It would not necessarily replace the factor
of safety as a design criterion, but would help to establish the optimum factor of uncertainty
level.

2.3  HISTORICAL ASPECT OF ACCEPTABLE PROBABILITY OF FAILURE.

A.G. Pugsley’s book “The Safety of Structures” (1966) refers to acceptable structural accident
rate, developed from British military flight data during the late 1930s, as being in the region of 1
per 107 flight hours.  “Under war conditions,” he states, “this rate rose somewhat, primarily due
to changes in loading and usage; by the time it reached 5 in 107 flight hours, pilots and crews
began to regard the type as structurally dangerous, and wanted design changes....  Post-wartime
civil airline experience has confirmed this tendency to react against structural failure very
strongly, ...and has lead to the belief in airline operation that the structural accident rate should
not exceed 1 in 107 hours.”

In his 1954 paper [5], A.M. Freudenthal, concerning civil engineering structures, addressed the
subject of acceptable probability of failure, stating “The choice of the specification of probability
of failure depends on the importance and cost of the structure as well as on the consequences and
cost of failure.”  Concerning aviation, he referred to “...the usually accepted design value (risk)
of 2 in 107 flying hours.”

Released in 1990, the United States Air Force general specification for aircraft structures (AFGS
87221A) states that when probabilistic methods are used to design airframe structures, the
maximum acceptable frequency of structural failure leading to the loss of the aircraft is 1 x 10-7

occurrences per flight (or 1 occurrence in 107 flights).

Table 2-1 shows accident rates from U.S. aviation in the period from 1983 to 1992, along with
the 10-year average.  Only one of these accidents is known to have resulted from structural
failure.  The rates for structural incidents are in need of further study at this time.  Table 2-2
gives a summary of the risk of different activities put in appropriate units:  deaths per person, per
hour of exposure.  This shows the relative risk of aviation accidents compared to risks
encountered in everyday life.  These aviation accident rates were taken from 1985 to 1994
data [11].

A study of U.S. major airline structural incidents during 1985-1994 was performed using data
from the FAA Incident Database in the FAA Internet Website.  Nearly 5,500 incidents were
identified, representing approximately 108 flights.  After individual review and subsequent
screening, 62 of the 5,500 incidents resulted from structural failure.  Of the 62 U.S. major airline
structural incidents, one resulted in a fatal accident, namely the Aloha Airlines accident in 1988.
Resulting rates are presented in table 2-3.
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TABLE 2-1.  U.S. AVIATION FATAL ACCIDENT RATES:  1983-1992

Fatal Accident Rates Per Million Flights

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 Avg.
Scheduled

Service ( )1

0.57 0.17 0.66 0.29 0.41 0.27 0.69 0.38 0.40 0.26 0.41

Nonscheduled

Service ( )1

0 0 8.40 3.65 0 0 5.32 0 0 0 1.74

Commuter

Carriers ( )2

0.43 2.61 2.37 0.71 3.56 0.69 1.77 0.95 2.94 2.43 1.85

On-Demand

Taxis ( )3

11.4 8.10 13.6 11.5 11.3 10.6 8.3 12.5 11.6 10.8 11.0

General

Aviation ( )4

19.4 18.7 17.5 17.5 16.5 16.8 15.3 15.6 15.2 15.0 16.8

Total Rate 15.1 14.4 13.7 12.8 12.2 12.1 11.4 11.5 11.2 11.0 12.5

(1)  Includes accidents involving deregulated all-cargo air carriers and commercial operators of large aircraft during
scheduled 14 CFR 121 operations.

(2)  Includes accidents involving all-cargo air carriers during scheduled 14 CFR 135 operations.
(3)  Includes accidents involving all air carriers during scheduled 14 CFR 135 operations.  Assumed 1 hr/flt
(4)  All operations other than those operating under 14 CFR 121 or 14 CFR 135.  Assumed 1 hr/flt.

TABLE 2-2.  NORMALIZED RISK COMPARISON

Cause Number of Deaths Death/(Person-Hour Exposure)

       Motor Vehicle Accident1 43,000 0.49 10-6

       Home Accident1 26,700 0.03 10-6

       Work Accident1 5,000 0.02 10-6

       Aviation Accident2

             - Major Airlines
             - Commuter Airlines

169
30

0.21 10-6

0.99 10-6

1Based on 1994 data.  National Safety Council “1995 Accident Facts” publication
2Based on average from 1985-1994 data.  FAA Statistical Handbooks of Aviation, 1985-1994

TABLE 2-3.  U.S. MAJOR AIRLINE STRUCTURAL FAILURES
Incidents and Accidents per Flight

Type Number (1985-1994) Incidents (Accidents) Per Flight

Total Incidents 5,497 5.5 x 10-5

Structural Incidents 62 6.2 x 10-7

Structural Accidents 1 1 x 10-8
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3.  GENERAL THEORY AND APPROACH.

This section will present the fundamental theory and concepts behind probabilistic methods and
list the general steps involved in performing a probabilistic structural analysis.  A list of six
general steps is given, followed by a detailed discussion of each step in sections 3.3 to 3.8.  In
section 3.7, the four main approaches to probabilistic analysis (integration, Monte Carlo
simulation, response surface approximation, and limit state approximation) are explained.
Simple example problems are shown, starting with one variable, then two variables (integration)
with normal/normal, lognormal/lognormal and lognormal/normal distributions.  A three-variable
case is presented, leading into discussion of Monte Carlo simulation, response surface, and limit
state approximation methods; there are accompanying example problems illustrating these
methods.

3.1  BASIC APPROACH.

The basic probabilistic approach can be summarized as the statistical definition of all input
variables required for structural analysis methods, statistical definition of the resulting stress and
strength of the structure associated with predicted failure modes, and evaluation of the resulting
probability of structural failure.  Figure 3-1 illustrates this process.  The left-hand side shows the
input data to determine the applied stress distribution, with each having a statistical distribution,
while the right-hand side depicts the various capabilities of the structure.  The middle shows the
output of the process, that being an applied stress and resistive component strength distribution,
per failure mode, with an associated probability of failure.

FIGURE 3-1.  PROBABILISTIC ANALYSIS CONCEPT
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3.2  GENERAL STEPS TO PROBABILISTIC ANALYSIS.

1. Potential failure modes of the structure under anticipated loading conditions are
identified.

2. An acceptable probability of failure (or minimum reliability) is established for each
failure mode and/or location on the structure.

3. Existing structural analysis methods are used to model the internal response (stresses) of
the structure to applied loads and to model the stiffness of the structure.

4. Random design variables affecting both stress and strength are statistically defined.

5. Probabilistic analysis methods are applied to determine the probability of failure at
predetermined locations.

6. System probability of failure is modeled as a function of individual location failure
probabilities and comparison is made to the acceptable probability of failure.

3.3  STEP 1IDENTIFY POTENTIAL FAILURE MODES.

The engineer must understand the general behavior of the structure being analyzed.  The failure
mode can change from location to location on the structure, with some areas being subject to
more than one failure mode.  This is where engineering know-how is essential.

Causes of structural failure are usually grouped into two broad categories:  static failure, which is
usually breakage or buckling, and cyclic failure, characterized by fatigue and crack growth.
Probabilistic methods have been developed to assess structural failure probability for both static
and fatigue scenarios.  Failure under static loading (steady or steadily increasing) can be caused
by either overstress resulting from the applied load exceeding the load-bearing capacity of the
structure or fracture resulting from a combination of applied load and an existing crack growing
to critical length.

Structures subjected to cyclic (repeated) loadings can be life-limited by many factors such as the
presence of manufacturing defects (e.g., cracks, voids, and delaminations) or cyclic operating
temperatures, pressures, and loads.  Metallic structural cyclic failure is usually associated with
the growth of cracks, whereas composite cyclic failure (although not fully understood) has been
modeled assuming cyclic delamination growth and/or cracking of the matrix material.

3.4  STEP 2DEFINE ACCEPTABLE PROBABILITY OF FAILURE.

The acceptable probability of failure is the criterion to which the results of the probabilistic
analysis will be compared to determine if the design is acceptable.  Specification of this
acceptable, or target, probability of failure for the total structure is a complex issue that generally
will not be decided upon by the engineer performing the probabilistic analysis.  Legal, technical,
and socioeconomic considerations are involved.  The agency certifying the structure should be
responsible for setting this overall specification for the structure.  Proposed failure probability
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values seen most often in literature range from 1 x 10-7 to 1 x 10-9 per flight, but this issue
remains unresolved at the present time.

If an engineer is performing a probabilistic analysis on only a portion of the structure, there
exists the challenge to set a target probability of failure for that component, given the total
system target level.  Depending on the complexity (and dependency) of the structural
components, this task could range from being straightforward (e.g., all components are equally
critical and independent) to requiring use of fault tree analysis methods to account for redundant
load paths.  Modeling system probability is discussed further in this section.

3.5  STEP 3DEVELOP MODELS FOR STRESS AND STRENGTH.

It is important to note that traditional structural analysis and finite element theory are not being
supplanted, but rather are an integral part of the probabilistic design process.  The probabilistic
structure must be built around the existing structural analysis process.  Optimally, probabilistic
analysis codes should be interfaced to these structural analysis programs and procedures so that
the structural analysis output can be directly fed to the probabilistic program and vice-versa.

3.6  STEP 4STATISTICALLY CHARACTERIZE DESIGN VARIABLES.

In most probabilistic applications, the two desired probability density functions (PDFs) from
which structural reliability is determined represent the maximum stress the structure will
experience and the material strength of the structure to resist this maximum applied stress.
Unfortunately, these PDFs are not directly available and must be generated from test data and/or
analysis.

A common procedure to accomplish this consists of a goodness-of-fit test between the theoretical
distribution and the actual data.  In some instances, a goodness-of-fit test will not reject several
types of distributions, so the engineer must choose among them.  The calculated probability of
failure is sensitive to the underlying form of the distribution if the probability is sensitive to the
tails of the distribution, which is usually the case for aircraft structural reliability.  Therefore
choice of the appropriate distribution is very important.  This section is intended to give
considerations for identifying appropriate distributions of design variables.  Two excellent
references for identifying appropriate distributions are (1) a book entitled Statistical
Distributions, by M. Evans [12] and (2) a technical paper entitled “Statistical Characterization of
Life Drivers for a Probabilistic Design Analysis”, by E. Fox [13].

3.6.1  Random Variable Definition.

The words “random variable,” in ordinary lay usage, connote that one does not know what value
a variable will assume.  However, for mathematicians this term has precise meaning:  though we
do not know this variable’s value in any given case, we do know the values it can assume and the
probabilities of these values.  The result of a single trial associated with this random variable
cannot be precisely predicted from these data, but we can reliably predict the result of a great
number of trials.  The more trials there are (larger sample), the more accurate the prediction.
Thus, to define a random variable, we must indicate the values it can assume and the
probabilities of these values.
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Design variables exhibit differing variability according to the processes under which they are
defined or the environment in which they are tested.  Some variables have a large amount of
data, such as those monitored by statistical process control (SPC), while other variables may
have limited data available.  Some variables are naturally skewed about a mean value, such as
the maximum normal load factor at the aircraft center of gravity (nz), while others may be
symmetric about a mean value, such as a geometric tolerance.

The first delineation of random variables is whether the variable is continuous or discrete.
A random variable is considered to be continuous if it can assume any value in a certain interval
(a, b), whereas a random variable is called discrete if it can assume only a finite set of values in
the interval.

3.6.2  Continuous Random VariablesThe Probability Density Function (PDF) and Its
Associated Cumulative Distribution Function (CDF).

If a random variable is defined in the interval (a, b), there may be an infinite number of possible
values the variable can assume from a to b.  Therefore the probability that the variable equals a
certain value, say x, in the interval has no physical meaning and is zero.  Physically meaningful
would be the probability that the variable falls into a subinterval x to x + ∆x.  The probability
density function (PDF) describes the distribution of such probabilities as a function of x.
Commonly encountered examples of such PDFs are the normal, lognormal, Weibull, beta, and
uniform; each of these will be discussed below.  (The cumulative distribution function (CDF),
the integral of the PDF from -∞ to some finite value of the argument represents the probability
that an arbitrarily selected value of the argument will be less than the value of the CDF for that
argument.)

Because some distributions are unbounded on at least one side, they often specify expected
frequency information in an extreme region where there is no observed data.  Yet this extreme
region largely influences the probability of failure; therefore these distributions should be used
only if there is a large amount of data available (enough to obtain extreme values) or where
experience has shown the distribution to be of a certain form.  Examples of variables with
potentially large amounts of data include SPC variables for a manufacturing process and
accelerometer data for aircraft structure.

Continuous distributions which are bounded on both sides include beta and uniform
distributions.  The accuracy of these distributions depends primarily on determining the physical
bounds.  Smaller amounts of data are normally required because the data are used only to
determine the most likely values between the bounds, i.e., there are no extreme values that need
to be modeled in the tails of the distribution.

If it is impossible to define one value as being more likely than another, the uniform distribution
is used.  If some values have a greater chance of occurring than others, the beta distribution can
be used.  In addition to uniform and beta, continuous distributions such as normal, lognormal,
and Weibull can be truncated at upper and/or lower limit values.  The limits are determined by
engineering judgment or physical limitations associated with the variable.
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3.6.2.1  Normal Distribution.

The normal (Gaussian) distribution is the most widely known distribution.  The equation shown
in table 3-1 even appears on the German ten-mark bank beside the portrait of C.F. Gauss.  The
normal is a two-parameter distribution with mean and standard deviation, and as most engineers
know, is symmetrical about its mean.  Figure 3-2 shows the normal with the effect of different
standard deviations.  As σ decreases, the PDF gets squeezed toward the mean.  The standard
deviation is also the distance between the mean and the points of inflection of the PDF.

TABLE 3-1.  PROBABILITY DISTRIBUTION DESCRIPTIONS
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Normal random variables are encountered in a wide variety of problems.  From the central limit
theorem we know that the sum of a large number of identical independent random variables is
approximately normal.  Actually this theorem even holds under much weaker conditionsthe
variables do not have to be identical and independent.  It is this theorem that explains why
normal random variables are so often encountered in nature.  When we have an aggregate effect
of a large number of small random factors, the resulting random variable is normal.

However, it must be recognized that everything is not normally distributed.  The normal
distribution, while oftentimes convenient to use in a probabilistic analysis with respect to
complexity of calculations, is one of the least conservative distributions that can be used.  This is
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FIGURE 3-2.  THE NORMAL DISTRIBUTION

because the function values drop off very quickly away from the mean, compared to the skewed
tail of the lognormal or Weibull.  What this translates t is a much smaller likelihood of obtaining
extreme values from the distribution, which in turn translates to lower probability of failure.

3.6.2.2  Lognormal Distribution.

A random variable is lognormally distributed if the natural logarithm of the random variable is
normally distributed.  It starts at t0 which is the location parameter (commonly set to zero).  As
seen in figure 3-3, the lognormal distribution is skewed to the right.  The degree of skewness
increases as the standard deviation increases for a given mean value.  For the same standard
deviation, the skewness also increases as the mean increases, as seen in figure 3-3.  The mean
and standard deviation of the lognormal distribution in terms of standard units (nonlogarithmic)
are
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3.6.2.3  Weibull Distribution.

Waloddi Weibull delivered his now-famous paper [4] in 1951, claiming his distribution, or more
specifically his family of distributions, applied to a wide range of problems.  Initial reaction was
mostly negative, but time has shown he was correct.  Today it has many applications in different
industries and in particular the aerospace industry.  It can model unimodal distributions with
shapes varying from highly skewed in either direction to symmetrical, as shown in figure 3-4.
The Weibull distribution is widely used with brittle materials, such as carbon fibers and
ceramics, as it is better able to cope with the large amount of scatter in the material properties of
these types of materials [14, 15].
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FIGURE 3-4.  THE WEIBULL DISTRIBUTION

For the shape parameter (β) equal to 1, it becomes the two-parameter exponential distribution,
while for β > 1, the function assumes the shapes shown in figure 3-4.  For β values near 3, its
coefficient of skewness approaches zero and the function is capable of approximating a normal
distribution.  A change in scale parameter (θ) has the same effect on the distribution as a change
of the scale of the abscissa.  If θ is increased while keeping the other two parameters constant,
the distribution gets stretched out to the right and its height decreases.  The area under the PDF
from the location parameter ( t0 ) up to the scale parameter (θ) is 0.632.  As its name implies, t0

locates the distribution along the abscissa.  When t0  is zero, the distribution starts at the origin.

3.6.2.4  Beta Distribution.

This distribution is defined in a finite interval 0 to 1.  As seen in figure 3-5, the distribution is
capable of assuming a symmetric or skewed form.  It is unclear why this is not seen often in
examples of probabilistic methods; perhaps because of the unavailability of goodness-of-fit tests
that apply to this distribution.  Statistical capabilities in common computer software are rapidly
enabling such goodness-of-fit tests (via optimization).  Perhaps another reason for not using this
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is the fact that its domain is bounded, and there may be concerns of being unconservative by
choosing physical bounds.
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3.6.2.5  Uniform Distribution.

As previously stated, the uniform distribution is used when no weight can be given to a specific
value or interval within the bounded interval a to b.  In figure 3-6, any value between 0 and 10
would have an equal chance of occurring.
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3.6.3  Discrete Random Variables and Poisson Distribution.

A discrete random variable can be defined by a table of (xi, pi) values, where xi are the possible
values of the variable and pi the corresponding probabilities.  The values xi can be arbitrary, but
the associated probabilities must be nonnegative and sum to 1.  The table of probabilities may be
predefined by the engineer or calculated from a discrete distribution such as the Poisson.

The Poisson distribution can be used to model the total number of occurrences of some
phenomenon during a fixed time period or within a fixed region of space.  The Northrop
Grumman methodology (section 5) uses it to model the number of manufacturing defects in a
structural component.  The Poisson distribution may be obtained from the identity:

e x ex x− + = 1

This can also be written as:
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The interpretation of this distribution is as follows.  Each term represents a probability.  If x is
defined as the expected, or average, number of occurrences of an event, then

e x− =  the probability that the event will not occur.

x e x− =  the probability that the event will occur exactly once.

x e x2

2

−

=
!

 the probability that the event will occur exactly twice, and so on

Let the manufacturing defect rate for a certain defect, based on defects per square foot, be
defined as λ.  Then for a structural component of area Α, the number of expected defects would
be x A= ⋅λ .  The defect rate λ is always assumed to be constant.  A Poisson PDF is shown in
figure 3-7, with a mean or expected number (denoted x) of 2.
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3.6.4  Considerations for Composite Material Properties and Sample Size for Material Testing.

The amount of scatter observed in composite material testing tends to be high relative to metals.
Variability in composite material property data results from a number of sources, including
variability in laying up the material, batch-to-batch variability of raw materials, and material
testing methods.  In addition, composite properties show higher (compared to metals)
degradation due to environmental effects, which creates the need for testing at different
temperatures and moisture absorption levels.

Because of the batch-to-batch variability, the data should not be indiscriminately pooled over
batches, as pooling batches involves the implicit assumption that this (batch-to-batch) source of
variability is negligible.  Material property data should also be tested for outliers (values that
statistically do not belong to the other data).  Should one be identified, MIL-HDBK-17 suggests
the physical cause for the suspicious value be investigated (e.g., testing or calibration error).  If a
cause cannot be found, the value should be kept.

The Weibull distribution has been shown to effectively model the behavior of brittle materials,
including composites.  MIL-HDBK-17 recommends the Weibull distribution be used, as a first
choice, to model composite material failure behavior.  As previously stated, one advantage of the
Weibull is its ability to take on varying forms, from symmetric (approximately normal) to highly
nonsymmetric distributions.

The purpose of taking a sample is to find out something about the population.  The larger the
sample, the less is the risk of distortion by extreme values, and the closer is the approximation
between sample and population mean and standard deviation.  For practical purposes, the sample
standard deviation is sufficiently close to the population standard deviation when the sample size
is at least 30.

Mean = 2
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At present, there is no criterion for determining the optimum sample size in material testing for
application to probabilistic design.  Obviously, the larger the sample sizes become, the narrower
the confidence intervals of the estimates of the distribution parameters.  One method has been
suggested [16] to relate sample size to material cost as well as anticipated probability of failure.
In this approach, the smaller the specified failure probability becomes, the larger the value of
optimum sample size.  The authors also relate optimum sample size to the type of distribution
shown.

With composite materials, it is advantageous from a cost and schedule standpoint to test as few
specimens as possible; therefore small sample sizes (usually considered to be less than 30) are
often used to generate material strength values for design parameters.  Another factor driving this
is the many different required tests at different temperatures and moisture absorption levels, as
mentioned above.  For example, to qualify a composite material for a commercial application,
the FAA requires property values for tension, compression, and shear tests subjected to the
environmental conditions: hot-wet, cold-dry, and room temperature for three separate batches of
material.

It has been suggested [17] that sample size is not an important issue with probabilistic design,
because an initial estimate of the distribution parameters can be made with limited data, then
probabilistic analysis runs made to determine the sensitivity of the material property in question.
If the probability of failure is sensitive to the material property, then more testing would be
prudent, and if not, additional testing would be a waste of time and money.  This point is debated
in section 7.

3.7  STEP 5STRUCTURAL RELIABILITY ASSESSMENT.

This section begins with the basic mathematical formulation of the problem, along with simple
examples for assessing structural reliability.  Then more complex (real world) problems are
formulated and four major solution approaches are described that have been developed by
industry and academia.  Sections 3.7.2 through 3.7.5 will give an example of each of the four
solution approaches.

The basic problem for probabilistic analysis remains to formulate expressions defining the load
(or stress) on the structure and the resistance to applied load (or strength) of the structure.  For a
typical design condition, both stress and strength can be plotted in the same horizontal axis as
shown in figure 3-8.  The mean strength, obviously, is greater than the mean applied stress.
However, the overlap of PDFs suggests that it is possible for strength to be less than applied
stress, which is the condition for failure.  This illustration conveys the essence of probabilistic
structural analysis:  there is a possibility of failure, and it is defined in the small region of overlap
between the PDFs.
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FIGURE 3-8.  SIMPLIFIED (2-DIMENSIONAL) FORMULATION

A technically accurate description of the stress-strength curve overlap is shown in figure 3-9,
showing the stress and strength along the horizontal and vertical axes, respectively.  The line
drawn represents the scenarios where stress = strength, or g(R,S) = R - S = 0.  This is
often referred to as the “limit state” that separates the failure region (g < 0) from the safe region
(g > 0).  The function g(R,S) is commonly referred to as the performance function.  The
probability of failure is defined as the volume under the surface shown in the failure region
where g < 0.
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FIGURE 3-9.  THREE-DIMENSIONAL REPRESENTATION OF PROBLEM

The probability of failure is defined as PF= P[g(R,S) ≤ 0].  Aside from applied stress and
material strength, there are numerous other R,S variates, listed in table 3-2, for which
probabilistic analyses can be performed.
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TABLE 3-2.  LIMIT STATE FORMULATIONS USED IN AEROSPACE
 STRUCTURE DESIGN

        Failure Occurs if  R   ≤                 S
Clearance  ≤   Maximum displacement
Fracture toughness  ≤   Stress intensity factor
Critical crack size  ≤   Growing crack size
Critical material thickness  ≤   Corrosion depth
Tolerable noise level  ≤   Service noise level

The statistical variation of R and S are described by the probability density functions fR(r) and
fS(s), respectively.  The overlap region (volume) is quantitatively obtained from the following
expression:

∫∫=
Ω

drds)s,r(fP
S,R

f

where fR,S(r,s) is the joint density function and Ω is the failure set, i.e., the set of all values of R
and S such that g(R,S) ≤ 0.  If the variables R and S are statistically independent (changing one
has no effect on the other; they share no common variables), then the joint density function is
expressed as the product of individual density functions as follows:

)s(f)r(f)s,r(f SRS,R = and thus ∫∫=
Ω

dsdr)s(f)r(fP
SR

f

We will now consider 3 scenarios producing different expressions for determining probability of
failure:  (1) one variable where probability of failure can be found using a statistics textbook and
calculator; (2) two variables where probability can be found using standard numerical integration
routines; and (3) more than two variables where alternative means must be used to determine the
probability.

The example consists of a steel bar, with cross-sectional area A, subjected to uniaxial tensile load
(denoted P), as shown in figure 3-10.  The failure mode is yielding, i.e., the bar fails if the
applied load exceeds the bar’s yield strength (denoted Fy).

FIGURE 3-10.  17-7PH STEEL BAR LOADED IN TENSION

The three different cases will all use this example configuration, but each case will have a
different number of parameters that will be considered random variables.  The performance
function for this example is written as g = Fy × A - P, such that g < 0 indicates failure.

 PP



3-14

3.7.1  Single-Variable Failure Probability Determination.

The steel bar is being laboratory tested in a tensile machine.  The load will be applied up to a
certain level P, which is considered to be exactly (or very close to) known because the machine
is calibrated.  The dimensions of the bar were measured beforehand using high precision
instruments, and its area was calculated to be 0.80 square inch.  Thus the variation of parameters
P and A is considered to be zero and the only probabilistic variable is yield strength.  All
parameters are assumed to be independent.  This means that cross-sectional area and yield
strength are both assumed to be unaffected by the applied loading.

The results from 17-7PH steel coupon testing were analyzed using a goodness-of-fit test, wherein
it was determined that the data most closely fit a normal distribution with the following
parameters:

                                         Fy:       Mean                      = 140,000 psi
                                                    Standard deviation  =   10,000 psi

Problem:  What is the probability of failure if the bar is subjected to a 100,000 lb. load?

Solution:  The performance function is thus g = Fy × 0.80 - 100,000.  Failure occurs when g ≤ 0,
which translates to Fy ≤ 125,000 psi as our definition of failure.  Therefore we need to calculate
the probability of a material with a published mean yield strength of 140,000 psi and standard
deviation of 10,000 psi having been manufactured such that its yield strength is below 125,000
psi.  This is depicted in figure 3-11.
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Probability
Density
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Area = Probability
of Failure

FIGURE 3-11.  FAILURE PROBABILITY DETERMINATION:  ONE VARIABLE

This probability can be found using a calculator and elementary statistics textbook.  We first
transform the stress values into a normal random variable z with a mean of zero and a standard
deviation of 1.  The distribution of a random variable with a mean of zero and a standard
deviation of 1 is called a standard normal distribution, and a table of areas under this curve (or
probabilities) is found in most statistics textbooks.
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The transformation is accomplished by the following:    z
Value

=
− µ

σ

The value 125,000 psi transforms into:    z
psi psi

psi
=

−
= −

125 000 140 000

10 000
15

, ,

,
.

Looking in a standard normal distribution table, we see that the area under the normal curve
up to z = -1.5 is 0.0668.  Therefore the probability of having a material strength less than
125,000 psi, knowing the material exhibits a mean value of 140,000 psi and a standard deviation
of 10,000 psi, is approximately 0.067.  Thus the probability of failure of the bar (region shown in
figure 3-11) is 0.067.

3.7.2  Two-Variable Probability of Failure Determination.

In most cases, the probability of failure is determined via numerical integration when two PDFs
are involved.  This section begins by showing how to adjust the parameters of a PDF to account
for an additional factor, which frequently arises in two-variable cases.  An explanation is given
next for normal-normal and lognormal-lognormal situations, circumventing the need to perform
numerical integration.  The section concludes with examples of normal-normal and lognormal-
lognormal scenarios and an example (lognormal-normal) where numerical integration is
required.

3.7.2.1  Adjustment of PDF Parameters.

Shifting (adding a factor) and scaling (multiplying by a factor) of design variables expressed in
the performance function are commonly needed and are accomplished by changing the
parameters of the PDFs.  Very seldom will the performance function be of the form g = x - y, for
the two-variable case.  The more common case would be g = C1x - C2y + C3.  Yet the data which
has been fit to a distribution are normally x and y.  Therefore we need a PDF for the quantity
[C1x] and a PDF for the quantity [C2y - C3].  The procedures for adjusting the parameters of the
x, y PDFs to account for multiplicative and additive constants are shown in table 3-3.

For example, assume measurements were taken to define the yield strength variable, Fy.  Assume
a normal distribution was found to give the best fit, with mean (µ) of 100,000 psi and standard
deviation (σ) of 10,000 psi.  If the performance function is g = 0.8 Fy - P, then we are interested
in using the mean and standard deviation of the quantity 0.8 × Fy.

So the new parameters (per table 3-3) are:

                                   Mean:                       0.8 × 100,000 = 80,000  and
                                   Standard deviation:  0.8 ×   10,000 =   8,000
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TABLE 3-3.  PROBABILITY DISTRIBUTION TRANSFORMATIONS

Distribution Parameters Transformation New Parameters
Normal µ , σ Shift by C3 µ  + C3 , σ

Lognormal µ ,σ , t0 Shift by C3 µ ,σ , t0 + C3  
Weibull θ , β , t0 Shift by C3 θ , β , t0 + C3

Normal µ , σ Scale by C2 0> C2 µ , C2 σ
Lognormal µ ,σ , t0 Scale by C2 0> µ +ln C2 ,σ , C2 t0

Weibull θ , β , t0 Scale by C2 0> C2 θ , β , C2 t0

These adjusted parameters would then be used to assess the probability of failure.

3.7.2.2  First-Order Reliability Method.

Assuming the variables x and y are statistically independent and normally distributed, the
variable (performance function) g = x - y or g = x + y is also normally distributed.  That is, it can
be shown [3-7] that the variable g, being a linear function of two Gaussian variables, is also
Gaussian.  Table 3-4 lists the mean and standard deviation associated with addition and
subtraction of normal PDFs.

TABLE 3-4.  COMBINING NORMAL DISTRIBUTIONS

Operation Mean Standard Deviation
g x y= + µ µ µg x y= + σ σ σg x y= +( ) /2 2 1 2

g x y= − µ µ µg x y= − σ σ σg x y= +( ) /2 2 1 2

If, for example, the performance function is g = x - y, then the mean and variance of g is
determined by

µ µ µg x y= −       and      σ σ σg x y= +( ) /2 2 1 2

The event of failure is g < 0.  The probability of failure is now given in terms of g:

dg
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If we let z = (g - µg) / σg,, then σg dz = dg.  When g = 0, the upper limit of z is given by
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and when g → - ∞, the lower limit of z → - ∞.
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The transformed integral becomes probability of failure = 
1

2

2

2 2

2

π

µ µ

σ σ

e dzz

x y

x y

−

−∞

−
−

+

∫ /

The random variable z is the standard normal variable!  Therefore the probability of failure can
be found by looking in the standard normal table for the area under the curve from -∞ to

z
x

x y

y= −
−

+

µ µ

σ σ2 2
.  This approach was developed by Cornell [7] and is a part of the First-Order

Reliability Method (FORM) [19].  He named the ratio the “safety index” and denoted it as β.

That is β
µ
σ

µ µ

σ σ
= =

−

+
g

g

x

x y

y

2 2
 and Pf = Φ{-β} where Φ is the cumulative distribution function for

a standard normal variable (look-up tables are in most statistics textbooks).  This equation makes
calculation of probability of failure for the normal-normal case extremely simple and fast.

3.7.2.3  Lognormal-Lognormal Case.

The parameters µ and σ in the PDF equation shown in table 3-1 are the mean and standard
deviation of the natural logarithms of the data.  That is, if all the test data were converted to
natural logarithms and then a mean and standard deviation of that data was calculated, those
values would be µ and σ.  As explained in section 3.6.2.2, the mean and standard deviation, in
non-logarithmic units, are calculated by the following equation:

Mean  =  e
µ σ+ 1

2
2

Standard Deviation  =  e e
2

2 2

1
2

1
µ σ σ+



 −























The equation used to calculate the probability of failure is identical to that used in the normal-
normal case, but again, remember the above definition of µ and σ.  The safety index is again

defined as β
µ
σ

µ µ

σ σ
= =

−

+
g

g

x

x y

y

2 2
 and Pf = Φ{-β} where Φ is the cumulative distribution function

for a standard normal variable (look-up tables are in most statistics textbooks).  This makes
calculation for the lognormal-lognormal case extremely simple and fast.

3.7.2.4  Other Two-Variable Cases.

Table 3-5 lists the expressions developed for the nine different combinations of normal,
lognormal, and Weibull PDFs.  For the combinations involving only lognormal and/or Weibull
distributions, it is assumed that the starting point (s0) of the stress distribution is less than the
starting point (t0) of the strength distribution.  They can be solved with commercially available
math software routines or a computer program can be written employing numerical integration
techniques.
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TABLE 3-5.  PROBABILITY OF FAILURE EXPRESSIONS FOR PDF COMBINATIONS

Stress-Strength
Distributions Probability of Failure Expression
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3.7.2.5  Two-Variable Example Problems.

Consider the example of the steel bar in tension.  The bar is put into service.  It has been
dimensionally checked beforehand, so the area (A) is a known constant.  The bar is used as a link
between two fittings and designed to fail in the interior region of the bar (as opposed to failing at
the attachment).  The applied loading, modeled as uniaxial tension, was measured on a similar
application, wherein 50 applied load measurements were taken.  Three cases will be discussed:
(1) normal-normal; (2) lognormal-lognormal; and (3) lognormal-normal.
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3.7.2.5.1  Scenario 1 (Normal-Normal Case).

The 50 measurements were statistically analyzed and it was determined through goodness-of-fit
testing that the data best fit a normal distribution, with the following parameters:

                                    P:       Mean                      = 100,000  lb.
                                              Standard deviation  =   10,000  lb.

The results from the 17-7PH steel coupon testing were analyzed using a goodness-of-fit test as
well, wherein it was determined that the data most closely fit a normal distribution with the
following parameters:

                                  Fy:      Mean                       = 140,000  psi
                                             Standard deviation  =   10,000  psi

The bar’s cross-sectional area was measured to be 0.80 square inch.

Problem:  What is the probability of failure of the 17-7PH steel bar with a cross-sectional area of
0.80 in2 in service?

Solution:  The performance function becomes g = Fy × 0.80 - P.  We calculate the safety index as
follows (remembering we must adjust the parameters µFy and σFy by the scale factor 0.8)

β
µ
σ

µ µ

σ σ
= =

−

+
g

g

Fy

Fy P

P
0 8

0 82 2 2

.

.
 = 

12 000

12 806
0 937

, .

, .
.

lb

lb
=

We know that  Pf = Φ{-β}  =  Φ{-0.937}  =  0.1745 from the standard normal probability table.

3.7.2.5.2  Scenario 2 (Lognormal-Lognormal Case).

The 50 load measurements appeared to be non-normal, being skewed to the right.  These data
were statistically analyzed and it was determined through goodness-of-fit testing that the data
best fit a 2-parameter lognormal distribution with the following parameters:

P: µ = 11.508
σ =  0.10

The results from the 17-7PH steel yield strength coupon testing were analyzed using a goodness-
of-fit test as well, wherein it was determined that the data most closely fit a 2-parameter
lognormal distribution with the following parameters:

Fy: µ = 11.847
σ = 0.0713

The bar’s cross-sectional area was measured to be 0.80 square inch.



3-20

Note:  Values of µ and σ were chosen because they correspond (using the equations previously
stated) to the means and standard deviations used in the previous normal-normal
example.  The corresponding means and standard deviations (for general information
onlynot used in the probability of failure calculation) of design variables Fy and P are:

            Fy:   Mean                      = 140,000 psi   and  P:   Mean                     =  100,000 lb.
                    Standard deviation =   10,000 psi                 Standard deviation =   10,000 lb.

Problem:  What is the probability of failure of the 17-7PH steel bar with a cross-sectional area of
0.80 in2 in service?

Solution:  The performance function is g = Fy × 0.80 - P.  The parameter µ for the Fy distribution
must be adjusted because the distribution that we must now deal with is 0.80 × Fy.  Per table 3-3,
only the lognormal parameter µ is affected (σ remains the same) by the scale factor 0.8.  The
adjusted parameter µ is

µ = 11.847 + ln(0.8) = 11.624.    σ = 0.0713 (unchanged).

Now, the safety index can be determined by

β
µ
σ

= =
−

+
g

g

11624 11508

0713 1002 2

. .

. .
 =  0.945

We know that Pf = Φ{-β} = Φ{-0.945} = 0.1724 from the standard normal probability table.

3.7.2.5.3  Scenario 3 (Lognormal-Normal Case).

The 50 load measurements appeared to be non-normal, being skewed to the right.  These data
were statistically analyzed and it was determined through goodness-of-fit testing that the data
best fit a 2-parameter lognormal distribution with the following parameters:

                                    P:       µs = 11.508
σs =  0.1000

The results from the 17-7PH steel yield strength coupon testing were analyzed using a goodness-
of-fit test as well, wherein it was determined that the data most closely fit a normal distribution
with the following parameters:

                                  Fy:       µ  = 140,000 psi
                                               σ =    10,000 psi

The bar’s cross-sectional area was measured to be 0.80 square inch.



3-21

Problem:  What is the probability of failure of the 17-7PH steel bar with a cross-sectional area of
0.80 in2 in service?

Solution:  The performance function becomes g = Fy × 0.80 - P.  Remember that the parameter µ
for the Fy distribution must be adjusted because the distribution that we must now deal with is
0.80 × Fy.  Per table 3-3, both the mean and standard deviation of the normal distribution are
scaled (multiplied) by 0.8.  The adjusted parameters are:

                                              µt  =  140,000 psi × 0.8  =  112,000
                                              σt  =    10,000 psi × 0.8  =      8,000

A computer program (FORTRAN) was written to solve the lognormal-normal integration
equation given in table 3-5:
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The result from executing the program was 0.1734.

3.7.2.5.4  Two-Variable Example Problem Summary.

The same physical problem was used, with three different scenarios, showing the normal-normal,
lognormal-lognormal solutions via the safety index shortcut method, then a lognormal-normal
solution was obtained via numerical integration.  The results are summarized in table 3-6.

TABLE 3-6.  TWO-VARIABLE EXAMPLE SUMMARY (SIGNIFICANT OVERLAP)

Case Stress Distribution Strength Distribution
Probability of

Failure
1 Normal

µ = 100,000;  σ = 10,000
Normal

µ = 112,000;  σ = 8,000
0.1745

2 Lognormal
µ = 11.508;  σ = 0.1;  S0 = 0

Lognormal
µ = 11.624;  σ = 0.713;  S0 = 0

0.1724

3 Lognormal
µ = 11.508;  σ = 0.1;  S0 = 0

Normal
µ = 112,000;  σ = 8,000

0.1734

One can conclude from this that the choice of distribution has negligible effect on the resulting
probability of failure.  While this is certainly the case for this set of scenarios wherein the
distributions are close together and having a significant overlap, this cannot be extrapolated to
cases where the distributions are far apart.  To illustrate, consider the mean of the yield strength
to be 200,000 psi, instead of 140,000 psi.  This clearly will separate the distributions
significantly.  The resulting probabilities of failure are shown in table 3-7.
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TABLE 3-7.  TWO-VARIABLE SUMMARY ILLUSTRATING TAIL SENSITIVITY

Case Stress Distribution Strength Distribution
Probability of

Failure
1 Normal

µ = 100,000;  σ = 10,000
Normal

µ = 160,000;  σ = 8,000
1.4 x 10-6

2 Lognormal
µ = 11.508;  σ = 0.1;  S0 = 0

Lognormal
µ = 11.982;  σ = 0.05;  S0 = 0

1.1 x 10-5

3 Lognormal
µ = 11.508;  σ = 0.1;  S0 = 0

Normal
µ = 160,000;  σ = 8,000

1.4 x 10-5

The results from table 3-7 exemplify the tail sensitivity frequently mentioned in probabilistic
literature.  This issue is discussed further in section 7.

3.7.2.6  Probability of Failure With More Than Two Variables.

In many real world design and analysis situations, particularly with aerospace structures, the
performance function is not even a definable entity.  Even if it is, there will most likely be more
than two random variables involved, and the resulting multiple integral is in general very
difficult to evaluate.  This section will discuss methods that have been developed to
accommodate these situations.

The Monte Carlo simulation technique, in its simplest form, is presented first.  Refinements to
the technique to speed up the simulation will be briefly mentioned.  This will be followed by a
detailed discussion of the response surface method and finally a high-level explanation of limit
state approximation methods which have been the focus of most of the published probabilistic
methods research in the past 15 years.

3.7.3  Monte Carlo Simulation.

The general idea of this method is to solve mathematical problems by the simulation of random
variables.  In 1949, an article [20] entitled “The Monte Carlo Method” appeared.  The name
“Monte Carlo” is derived from that city in the Principality of Monaco famous for its casinos.
One of the simplest mechanical devices for generating random variables is the roulette wheel,
thus the association.  The theoretical foundation of this method had been known long before this
1949 article was published, and certain problems were solved by means of random sampling
[21].  However, because simulation of random variables by hand is a laborious process, use of
the Monte Carlo method as a universal numerical technique became practical only with the
advent of computers.

To understand what kinds of problems are solvable by this method, it is important to note that the
method enables simulation of any process whose development is influenced by random factors.
Monte Carlo simulation is a widely used technique for probabilistic structural analysis, serving
two main purposes:  (1) validating analytical methods and (2) solving large, complex systems
when analytical approximations are not feasible.
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The second case results when the performance function [g(X)] is a function of many variables or
when it cannot be expressed in terms of the random variables Xi.  In this case, g(X) can only be
evaluated numerically through a structural analysis such as the finite element method for sets of
input variables.  That is, Monte Carlo simulation can provide input to perform multiple finite
element analyses of the system (one analysis/result per unique set of input variables) and then
calculate the number of times failure and success are predicted.

In order to evaluate the failure probability corresponding to a known performance function, g(X),
the Monte Carlo simulation method would consist of the following steps:

1. Given the predefined PDFs of the random variables in the performance function, generate
a single value of each variable.

2. Assess the performance function: if g(X) < 0 ⇒ system failure.

3. Repeat steps 1 and 2 N times.

4. Estimate the probability of failure by Pf = Nf / N, where Nf is the number of failures.

In order to evaluate the failure probability corresponding to an unknown performance function,
the Monte Carlo simulation method would consist of the following steps:

1. Given the predefined PDFs of the random variables involved in the deterministic
structural analysis (e.g., FEM), generate a single value of each random variable.

2. Perform the deterministic analysis, and record if failure is predicted.

3. Repeat steps 1 and 2 N times.

4. Estimate the probability of failure by Pf  =  Nf / N,  where Nf is the number of failures.

3.7.3.1  Accuracy and Number of Required Trials.

Remember that this Pf value is an estimate of the true Pf.  Actually it is a mean value of the
failure probability.  The accuracy of this estimate depends on the sample size, i.e., number of
simulations.  As N approaches infinity, the estimated Pf will stabilize (if the random number
generator is good) to the true value.  Of course, the true value itself is an estimate of the actual Pf

due to the inaccuracies in the PDFs, analysis models, etc.  One key issue to resolve is
determination of the number of simulations required.

The error of calculations is, as a rule, proportional to the square root of the quantity (1/N), where
N is the number of trials.  Hence it is clear that to decrease the error by a factor of 10, it is
necessary to increase N by a factor of 100 [21].  To address the question of how many
simulations are required for an estimated probability of failure, Shooman [22] derived the
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following formula relating the number of simulations N and the percentage error:

% error
P

N P

f

f
=

−
200

1
.  This equation was developed using a 95% confidence level.  Therefore,

there is a 95% chance that the error in the estimated probability will be less than the error
generated by this equation.  For example, if 10,000 simulations were performed and the
estimated probability was 0.01, then this equation yields 20% error.  That is, we are 95% sure the
actual probability of failure will lie between 0.01 ± 0.002.

3.7.3.2  Generating Random Numbers From PDFs.

Values of each input variable should be chosen such that the total group chosen is representative
of the probability characteristics of that variable.  The basic building block is the ability to
generate random numbers from a uniform distribution between zero and 1, denoted U(0,1).
Every value in the interval has equal likelihood of being chosen.  Random number generators are
common features of computer software.  Once a random number is picked from U(0,1), it is used
to generate a random value of the PDF of interest.  If the CDF of the random variable X is
denoted FX(x) and u is the random number generated, then the corresponding value of the
variable (X) is x F uX= −1( ) .  The procedure is illustrated in figure 3-12.

F U (u ) ,  F X (x )

 u  x

 1 .0
F U ( u )

  F X ( x )

4 5 o

FIGURE 3-12.  TRANSFORMING A U(0,1) PICK TO RANDOM VARIABLE

This shows the CDF of the random variable X on the right side and the CDF of U on the left
side.  Since U is a pick from a uniform (0,1) distribution, the CDF value at U is also U!  That is,

the uniform PDF is f x
b a

X( ) =
−
1

, and its CDF is f x
x a

b a
X( ) =

−
−

.  Since a = 0 and

b = 1 for the U(0,1) distribution, we see that the CDF value of U is indeed U.

Now, per figure 3-12, we take the CDF value (U) and find the value of the random variable X
that has that particular cumulative probability.  This cumulative probability can be found by
commercially available statistical computer software as well as most spreadsheet software.  That
is, the value U is passed in, and knowing the variable’s distribution parameters, a cumulative
probability is returned.
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3.7.3.3  Correlated Random Variables.

If some or all variables are correlated (a change in one has an effect on another), then it is
erroneous to sample from each PDF as if they were independent.  In general, it is difficult to
generate correlated variables.  There are procedures [23, 24] for transforming correlated
variables into uncorrelated variables, but the explanation and associated mathematics are beyond
the scope of this document.

3.7.3.4  Simulation Efficiency Improvement Approaches.

A straightforward Monte Carlo method, while very useful for a number of applications, becomes
extremely time-consuming to be practical for large finite element models.  Each finite element
run may take several hours, and with the probability of structural failure (hopefully) being very
small, direct Monte Carlo analysis is often unfeasible.  To overcome this, research efforts have
addressed ways to increase simulation efficiency.  The main techniques will be briefly explained;
details will be left to the interested reader.

Importance Sampling [23]:  This technique concentrates sampling points in the region which
mainly contributes to the failure probability, instead of spreading them out evenly across the
whole range of possible values of each random variable.  Instead of generating a huge amount of
successful (in the sense that the performance function g(X) > 0) simulations, this technique seeks
to generate only a few simulations, most of which lead to failure.  This is done by modifying
each variable’s PDF to generate these important samples; the modifications are taken into
account while computing failure probability.  Recently, adaptive importance sampling techniques
have been developed [25], which also focus sampling in the probability-critical regions to
increase efficiency.

Stratified Sampling [23]:  After the number of simulations (N) is calculated, based on the
expected failure probability, the domain of the random variables (assumed independent) is
divided into regions of equal probability, such that the sum of regions adds up to N.  Then one
random sample is generated from each region, and the g-function is evaluated for each sample,
from which failure probability is estimated from the ratio of the number of failures to the total
number of simulations.  A similar approach is called Latin Hypercube Sampling.  Both of these
methods are useful in representing the structural behavior accurately over a large domain, which
is quite different from importance sampling techniques.  Representing structural behavior over a
large domain becomes important when utilizing response surface techniques, which will be
described in section 3.7.4.

3.7.3.5  Summary and General Discussion.

Monte Carlo simulation has a major advantage over all other methods because it does not restrict
the way in which the analysis must be structured.  Monte Carlo is generally the baseline against
which other methods are compared.  In fact, in many papers, the result of the particular approach
is stated as percentage error from the Monte Carlo result.  The reason for this is that, given
sufficient simulations, the Monte Carlo answer will always converge to the same result.  As
discussed before, this resulting probability of failure, although it has converged, is still an
estimate of the true failure probability.
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3.7.3.6  Monte Carlo Example Problem.

This example consists of a 17-7PH steel bar, with cross-sectional area A and yield strength Fy,
subjected to uniaxial tensile load P, as shown in figure 3-13.  For like-manufactured bars, the
yield strength Fy is normally distributed with mean 140,000 psi and standard deviation 10,000
psi, while the area A is uniformly distributed between 0.7 and 0.9 square inch.  The applied load
P follows a lognormal distribution with location parameter µ = 11.508 and shape parameter
σ = 0.1, meaning that log(P) follows a normal distribution with mean 11.508 and standard
deviation 0.1.  (The mean of this lognormal distribution is approximately 100,000 psi and the
standard deviation is about 10,000 psi.)

FIGURE 3-13.  17-7PH STEEL BAR LOADED IN TENSION

Problem:  What is the probability of failure, i.e., the probability that the applied load will exceed
the yield capability of the bar?

Solution:  The performance function for this example is written as g = Fy × A - P, where Fy, A,
and P are the random variables described above, and failure is defined as any combination of Fy,
A, and P values which produce g < 0.  Although the probability distribution for each random
variable is known, the resulting distribution for g is difficult to quantify (a lognormal subtracted
from a product of a normal and uniform distribution).  Could the distribution of g be quantified,
then the probability of failure would simply be the cumulative distribution function value at 0.
However, in this example the Monte Carlo method is used to determine the probability of failure.

During each Monte Carlo trial, a value from each probability distribution is randomly sampled
(independently of the other two), and the resulting performance function value g is calculated.
Numerous trials are repeated and the resulting proportion of trials in which g is less than zero is
an estimate of the probability of failure.  As the number of trials approaches infinity, this
estimate naturally approaches the true probability of failure.  Figure 3-14 shows the spreadsheet
used to perform the Monte Carlo simulation for 100 trials.  Table 3-8 summarizes the estimated
probability of failure for various number of simulations.

TABLE 3-8.  MONTE CARLO SIMULATION RESULTS

Number of Simulations Probability of Failure
100 0.240

1,000 0.226
5,000 0.208
10,000 0.214
50,000 0.218
100,000 0.217

PP
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Monte Random Yield Strength: Fy Random Area: A Random Applied Load: P g function Failure

Carlo draw ~ Normal draw ~ Uniform draw ~ Lognormal g = Fy*A − P if g<0

trial from Parameters from Parameters from Parameters
U (0,1) 140000 U (0,1) 0.700 U (0,1) 11.508 1: failure

10000 0.900 0.100 0: no failure
1 0.1673 130352 0.5884 0.818 0.8242 109225 -2639 1
2 0.1583 129984 0.5636 0.813 0.7764 107367 -1725 1
3 0.1737 130602 0.6644 0.833 0.4411 98044 10732 0
4 0.7903 148076 0.0431 0.709 0.9024 113268 -8338 1
5 0.3319 135654 0.0604 0.712 0.0507 84472 12123 0
6 0.0402 122512 0.6516 0.830 0.4092 97250 4474 0
7 0.0514 123682 0.5770 0.815 0.9050 113443 -12593 1
8 0.1729 130571 0.8982 0.880 0.7669 107031 7825 0
9 0.1604 130070 0.1046 0.721 0.2749 93731 39 0
10 0.7289 146094 0.4067 0.781 0.5544 100880 13270 0
11 0.2377 132863 0.8092 0.862 0.2791 93851 20656 0
12 0.7407 146456 0.0777 0.716 0.5247 100127 4669 0
13 0.3369 135792 0.3491 0.770 0.6915 104611 -76 1
14 0.2182 132216 0.9454 0.889 0.5013 99540 18009 0
15 0.1175 128124 0.0799 0.716 0.9078 113632 -21898 1
16 0.5821 142073 0.3171 0.763 0.9144 114101 -5638 1
17 0.6285 143279 0.8526 0.871 0.9008 113164 11564 0
18 0.6181 143005 0.6654 0.833 0.8335 109622 9512 0
19 0.6119 142844 0.1382 0.728 0.9327 115570 -11630 1
20 0.4098 137718 0.4418 0.788 0.8182 108973 -402 1
21 0.8848 151992 0.5364 0.807 0.4462 98172 24529 0
22 0.3195 135309 0.9708 0.894 0.1178 88379 32608 0
23 0.9307 154812 0.9041 0.881 0.8298 109464 26899 0
24 0.0743 125554 0.7019 0.840 0.7970 108131 -2618 1
25 0.7281 146070 0.4832 0.797 0.9841 123330 -6964 1
26 0.7697 147379 0.7000 0.840 0.9042 113391 10407 0
27 0.6047 142656 0.2667 0.753 0.5445 100626 6843 0
28 0.3753 136822 0.3023 0.760 0.0876 86891 17157 0
29 0.1061 127526 0.4658 0.793 0.4974 99443 1705 0
30 0.8455 150172 0.6893 0.838 0.8010 108284 17540 0
31 0.5341 140855 0.3613 0.772 0.8793 111875 -3098 1
32 0.6344 143436 0.7464 0.849 0.8213 109101 12717 0
33 0.1156 128026 0.1835 0.737 0.9303 115357 -21041 1
34 0.4341 138341 0.6903 0.838 0.5804 101549 14389 0
35 0.5151 140379 0.1641 0.733 0.6301 102870 2 0
36 0.6410 143611 0.2850 0.757 0.9751 121080 -12367 1
37 0.8980 152703 0.5414 0.808 0.8387 109852 13573 0
38 0.6133 142880 0.8088 0.862 0.7822 107578 15552 0
39 0.2792 134147 0.1016 0.720 0.2107 91822 4807 0
40 0.8259 149379 0.9852 0.897 0.6452 103284 30714 0
41 0.7839 147855 0.2084 0.742 0.8482 110291 -629 1
42 0.3570 136335 0.4005 0.780 0.4802 99016 7339 0
43 0.2996 134744 0.5774 0.815 0.6223 102659 7222 0
44 0.2301 132616 0.4992 0.800 0.6081 102276 3795 0
45 0.0396 122444 0.9131 0.883 0.4850 99136 8935 0
46 0.7764 147602 0.4700 0.794 0.5627 101092 16105 0
47 0.8402 149955 0.2263 0.745 0.1144 88224 23532 0
48 0.3512 136180 0.5749 0.815 0.0817 86563 24420 0
49 0.6167 142968 0.7085 0.842 0.8223 109144 11193 0
50 0.1848 131026 0.6635 0.833 0.4522 98321 10784 0
51 0.3489 136118 0.1588 0.732 0.6828 104356 -4750 1
52 0.1943 131379 0.5613 0.812 0.3124 94760 11953 0
53 0.5086 140216 0.4789 0.796 0.9411 116358 -4775 1
54 0.9342 155080 0.1502 0.730 0.6314 102904 10311 0
55 0.0412 122631 0.8799 0.876 0.1703 90463 16961 0
56 0.4812 139530 0.5067 0.801 0.0725 86014 25796 0
57 0.3082 134992 0.4570 0.791 0.6580 103641 3192 0
58 0.1067 127556 0.7957 0.859 0.1227 88596 20993 0
59 0.2991 134730 0.5478 0.810 0.8221 109136 -65 1
60 0.2231 132383 0.3520 0.770 0.1262 88746 13242 0
61 0.2779 134108 0.2283 0.746 0.6922 104631 -4631 1
62 0.8310 149581 0.3778 0.776 0.4773 98943 17065 0
63 0.5940 142378 0.6433 0.829 0.6977 104797 13184 0
64 0.4524 138805 0.5261 0.805 0.1538 89858 21911 0
65 0.0220 119852 0.9286 0.886 0.7698 107133 -978 1
66 0.7485 146698 0.3370 0.767 0.1377 89228 23349 0
67 0.9856 161874 0.2055 0.741 0.1186 88413 31550 0
68 0.6115 142833 0.0523 0.710 0.4077 97212 4264 0

FIGURE 3-14.  MONTE CARLO SIMULATION FOR EXAMPLE PROBLEM
(Trials 1 through 68)
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Monte Random Yield Strength: Fy Random Area: A Random Applied Load: P g function Failure

Carlo draw ~ Normal draw ~ Uniform draw ~ Lognormal g = Fy*A − P if g<0

trial from Parameters from Parameters from Parameters
U (0,1) 140000 U (0,1) 0.700 U (0,1) 11.508 1: failure

10000 0.900 0.100 0: no failure
69 0.0745 125568 0.7070 0.841 0.0213 81246 24408 0
70 0.3818 136992 0.8046 0.861 0.2752 93740 24199 0
71 0.9369 155293 0.5073 0.801 0.1885 91094 33366 0
72 0.1647 130246 0.5647 0.813 0.1826 90893 14989 0
73 0.2412 132975 0.9907 0.898 0.4728 98832 20598 0
74 0.4743 139355 0.1364 0.727 0.1667 90335 11016 0
75 0.7135 145638 0.9253 0.885 0.7997 108234 20664 0
76 0.0200 119458 0.4036 0.781 0.1314 88968 4295 0
77 0.0411 122621 0.0169 0.703 0.9044 113400 -27151 1
78 0.8623 150905 0.5004 0.800 0.9966 130406 -9668 1
79 0.5768 141938 0.3233 0.765 0.2240 92239 16295 0
80 0.5703 141771 0.0950 0.719 0.0965 87364 14569 0
81 0.1694 130434 0.6188 0.824 0.1430 89438 18007 0
82 0.5735 141853 0.7247 0.845 0.8992 113065 6794 0
83 0.5482 141212 0.4820 0.796 0.7923 107951 4510 0
84 0.0759 125671 0.0539 0.711 0.0298 82424 6902 0
85 0.9043 153064 0.2909 0.758 0.8226 109157 6892 0
86 0.3335 135698 0.8957 0.879 0.2138 91918 27381 0
87 0.5158 140397 0.1215 0.724 0.6837 104381 -2691 1
88 0.8147 148954 0.5718 0.814 0.6572 103620 17682 0
89 0.6217 143099 0.7544 0.851 0.8227 109162 12597 0
90 0.3105 135055 0.3717 0.774 0.6447 103269 1309 0
91 0.4650 139121 0.7581 0.852 0.6772 104192 14287 0
92 0.0693 125193 0.2231 0.745 0.2154 91969 1252 0
93 0.4847 139616 0.2294 0.746 0.5198 100003 4134 0
94 0.8902 152276 0.9535 0.891 0.9425 116493 19141 0
95 0.1851 131039 0.0424 0.708 0.2077 91725 1112 0
96 0.8552 150591 0.4652 0.793 0.0103 78940 40485 0
97 0.2762 134058 0.6126 0.823 0.1796 90790 19474 0
98 0.8945 152510 0.3946 0.779 0.2104 91810 26982 0
99 0.0757 125653 0.4947 0.799 0.8442 110105 -9715 1

100 0.1145 127969 0.4198 0.784 0.0707 85897 14425 0
No. of Failures= 24
Estimate of PF= 0.24

FIGURE 3-14.  MONTE CARLO SIMULATION FOR EXAMPLE PROBLEM
(Trials 69 through 100) (Continued)

3.7.4  Response Surface Approximation Method.

For complex structures, the performance function is not available as an explicit function of the
random design variables.  The performance (or response) of the structure can only be evaluated
numerically at the end of a (often time-consuming) structural analysis procedure such as the
finite element method.  The goal of the response surface methodology (RSM) is to find a
predictive equation relating a response such as stress or deflection to a number of input variables.
Once we accomplish this, the equation can be used to determine the response, given values of
input variables, instead of having to repeatedly run the time-consuming deterministic structural
analysis.

The response surface thus represents the result (or output) of the structural analysis
encompassing (in theory) every reasonable combination of all input variables.  From this, we can
create (via simulation) thousands of combinations of all design variables, and perform a pseudo
structural analysis for each variable set, by simply looking up (via interpolation) the
corresponding surface value.  Each approximation of structural analysis output is thus generated
in a matter of milliseconds.  The end result is the creation of a stress or strength PDF.  This is the
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bottom line.  Once the stress and strength PDFs are defined, other methods (numerical
integration, Monte Carlo, limit state approximation) can be used to determine the probability of
failure.  The general steps, shown graphically in figure 3-15, to use the RSM are as follows:

1.  Perform the deterministic analysis (e.g., FEM) at strategically predetermined values of
the random variables.

2.  Using the results of step 1, construct an approximate closed-form expression for the
response variable (could be stress or strength) in terms of the design variables, using
regression techniques.

3.  Create a response (e.g., applied stress) PDF from simulation of the design variables using
the regression equation.

4. Find the probability of failure from the response PDFs using numerical integration,
Monte Carlo simulation (section 3.7.3), or approximation methods (section 3.7.5).

3.7.4.1  Step 1Analyze Structure at Chosen Values.

The challenge is to define representative combinations of the design variables to produce a
representative output (response).  Statistical design-of-experiments techniques can be used to
select these representative combinations and systematically simulate the structural analysis.  This
is analogous to Monte Carlo simulation, but by using experimental design methods, strategic
combinations of design variable values are employed to attempt to create an envelope containing
all possible (within engineering reason) output values.

There are several experimental design plans commonly used (not necessarily for probabilistic
analyses), including full and partial factorial.  References for further study are in references 26-
28.  One approach mentioned in literature with a proven application (section 4.9) is the Box-
Behnken method [29].  Box-Behnken designs require that all design variables be run at three
levels (as depicted in figure 3-15):  low, nominal, and high.  If there are three design variables,
then a total of 13 tests (runs of the structural finite element model) are required.  Specifically the
13 tests would be performed as shown in table 3-9.

                                                                                                   Monte Carlo Simulation

                Define High (+1),                                             Fit to Probability

                Nominal (0), and                                             Distribution
                Low (-1) values

FIGURE 3-15.  RSM PROCEDURE USING THREE LEVELS OF DESIGN VARIABLES

Experimental Design
Test Matrix

Run  x1  x2  ...  xn

   1   -1  -1  ...  -1
   2   -1   0  ...  -1
   .     .     .  ...   .
   .     .     .  ...   .
   N  +1  0  ... +1

Run structural
analysis code

(e.g., FEM, Thermal,
Laminate Analysis)

Analysis
Output:

(e.g., stress)
y1 ......  yN

Distribution of stress
(or strength):

                             y

Design Variable Data
x0, x1, ........xn

    xi Distributions:

               ....
      xi    ........   xn

Regression Equation:
Y = f(x1, x2, ...., xn)
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TABLE 3-9.  BOX-BEHNKEN EXPERIMENTAL DESIGN MATRIX

Test Run No. Variable 1 Variable 2 Variable 3
1 Low Low Nominal
2 Low High Nominal
3 High Low Nominal
4 High High Nominal
5 Low Nominal Low
6 Low Nominal High
7 High Nominal Low
8 High Nominal High
9 Nominal Low Low
10 Nominal Low High
11 Nominal High Low
12 Nominal High High
13 Nominal Nominal Nominal

3.7.4.2  Step 2Develop Regression Equation.

Once all 13 structural FEM runs have been executed, a linear regression equation relating the
design variable, Y, to the variables x1....xn can be obtained.  The Box-Behnken design was
developed for fitting second-order response surfaces, and the regression equation that can be
estimated is of the form

Y x x xi i
i

N

ii i
i

N

ij ij
ii j

N

= + + +
= = <
∑ ∑ ∑β β β β0

1

2

1

It is assumed that the regression equation will produce accurate estimates for the variable Y as
long as the values for all the design variables are somewhere between their low and high values.
That is, the regression model should not be extrapolated.  One goal in regression analysis is to
not have excessive terms in the equation, as the model is being forced to twist and turn through
too many data points, thereby misrepresenting the nature of the response surface.  To obtain the
best small model, the first step is to eliminate those terms which do not make physical sense.
That is, there may be physically meaningless combinations of variables (interactions).  Next a
stepwise regression procedure can be employed to ensure all variables (and combinations
thereof) are contributing significantly to the model.  Reference 30 provides a good discussion of
regression theory.

3.7.4.3  Step 3Develop Response Variable PDF.

Once the regression equation using all the design variables is developed, Monte Carlo simulation
is used to generate a distribution for the response variable.  A random draw is made from each
design variable probability distribution, as shown in figure 3-15, and then a single response value
associated with the set of chosen design variable values is calculated via interpolation.  The
result is a series of response values which can then be fit to a probability distribution or used to
create a discrete distribution if a continuous distribution does not provide an adequate fit.
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3.7.4.4  Step 4Evaluate Probability of Failure.

Assuming (1) RSM generates both stress and strength distributions or (2) if only one is
generated, the other is obtained by some other means, then the probability of failure can be
calculated by integration, Monte Carlo methods, or limit state approximation methods.

Several important notes regarding the response surface methodology:

• Probability distributions for the input variables must be accurate.

• Regression equations must fit analysis results well and since they are only quadratic in
nature, should only be used in situations where there are no abrupt changes in the
response for moderate changes of input variables.

• Monte Carlo simulation must be run enough times to get an accurate depiction of the
response variable’s probability distribution.

3.7.4.5  Response Surface Method Example Problem.

An example of the response surface method is taken from reference 31.  The hoop stress
(response variable) in a gas turbine disk is influenced by the following six life drivers (input
variables): radial temperature, modulus of elasticity, rotor speed, radial load, density, and
coefficient of thermal expansion.  Probability distributions for these input variables are given in
table 3-10.  FEM is used to determine hoop stress for combinations of these six input variables.

TABLE 3-10.  PROBABILITY DISTRIBUTION DEFINITION FOR HOOP STRESS
DETERMINATION

Design Variable Probability Distribution
1. Temperature (°F) Uniform (80, 220)
2. Modulus of Elasticity
    (psi, a function of temperature)

Uniform (-2σ, +2σ), where -2σ and +2σ represent the
lower and upper bounds of the modulus versus
temperature curves.

3. Rotor Speed (rpm) Normal (Base, 1.5% Base)
4. Radial Load (lb) Normal (2.9 x 106 lb, 0.145 x 106 lb)
5. Density (lbm/in) Normal (0.286, 0.0015)
6. Coefficient of Thermal
    Expansion (in/in/°F, a
    function of  temperature)

Uniform (-2σ, +2σ), where -2σ and +2σ represent the
lower and upper bounds, respectively, of the CTA versus
temperature curves.

Problem:  What is the probability distribution for hoop stress in the gas turbine disk?

Solution:  The input variables and their levels (coded as -1, 0, and +1 for low, nominal, and high,
respectively) are given in table 3-11. In this methodology, low and high levels are selected to
represent moderately extreme values.  Rather than conduct a finite element analysis for each of
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TABLE 3-11.  LOW, NOMINAL, AND HIGH DEFINITIONS FOR VARIABLES

Input Variable -1 0 1
F1: Temperature (°F) 80 150 220
F2: Modulus of Elasticity (psi) -2σ Nominal curve +2σ
F3: Rotor Speed (rpm) Base - 3% Base Base +3%
F4: Radial Load (lb) 2,610,000 2,900,000 3,190,000
F5: Density (lbm/in.) 0.283 0.286 0.289
F6: CTA (in/in/°F) -2σ curve Nominal curve +2σ curve

the 729 combinations of the six input variable levels, the Box-Behnken method is implemented.
Table 3-12 shows which combinations of input variables are analyzed.

TABLE 3-12.  THREE-LEVEL BOX-BEHNKEN DESIGN TEST MATRIX

F1 F2 F3 F4 F5 F6

±1 ±1 0 ±1 0 0
0 ±1 ±1 0 ±1 0
0 0 ±1 ±1 0 ±1

±1 0 0 ±1 ±1 0
0 ±1 0 0 ±1 ±1

±1 0 ±1 0 0 ±1
0 0 0 0 0 0

Since the designation ±1 represents two levels of the corresponding input variable, each of the
first six rows corresponds to eight FEM runs.  With the final row pertaining to the FEM run
where all input variables are at nominal level, there are a total of 49 FEM runs required for this
matrix.  Results of these runs are shown in table 3-13.

TABLE 3-13.  RESULTS OF FEM FOR GIVEN INPUT VARIABLE LEVELS

Run No. F1 F2 F3 F4 F5 F6 Response
1 -1 -1 0 -1 0 0 138.80
2 -1 -1 0 +1 0 0 147.00
• • • • • • • •
• • • • • • • •
• • • • • • • •

49 0 0 0 0 0 0 151.90

Stepwise regression is used to determine an equation which expresses the response, σhoop, in
terms of the six input variables:

σ hoop 1 2 3 4 5 6 3
2

1 2

1 5 3 4

151.8 8.77F 0.41F 8.1F 4.14F 0.97F 0.79F 0.11F 0.2F F

           0.37F F 0.25F F

= + + + + + + + + +

+
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This equation is then used to predict (very quickly) the hoop stress for different values of the
input variables.  To determine the hoop stress probability distribution, Monte Carlo simulation is
used to generate values of the input variables from their respective distributions, and the
regression equation is used to calculate the hoop stress value.  The result of numerous
simulations is a probability distribution for hoop stress.

3.7.5  Limit State Approximation.

These approximation methods have been the main thrust of probabilistic research over the past
15 years, and thus are the subject (either development or application) of numerous probabilistic
analysis technical papers and reports.  The premise is that the probability of failure as defined by
the equation:

PF =  ∫ ..D.. ∫ f(x1, ....., xn) dx1....dxn

cannot be evaluated in closed form except for a limited set of design driver distributions.  Monte
Carlo simulation for complex structural analysis codes is impractical from an execution time
standpoint, especially for low failure probabilities.  Applying a technique such as the response
surface method or importance sampling, to reduce the amount of structural analyses (e.g., FEM)
required, is one way of approaching the problem.  Another approach to solving the multivariable
integral is to employ limit state approximation methods.  These are also referred to as point
expansion methods in the literature and can be divided into two groups: (1) mean value and
(2) most probable point.

The first group, consisting of the Mean Value First Order (MVFO) and Mean Value First-Order
Second-Moment methods, while being fairly easy to implement, have been shown to be
potentially inaccurate for high reliability (low probability of failure ∼ 10-5 or below) calculations,
as well as for highly nonlinear performance functions [17].  Since this document is dealing with
aerostructures, we are definitely in the high-reliability region, and thus these approaches will not
be addressed.

3.7.5.1  Most Probable Point Methods.

There are several methods in this group, the main ones being First-Order Reliability Method
(FORM) and Second-Order Reliability Method (SORM).  These methods are the most complex,
both mathematically and conceptually, among all probabilistic analysis methods and will
therefore not be described in excruciating detail here.  The main steps to performing these
analyses will be given and references given for the interested reader.

In the first- and second-order reliability methods (FORM/SORM), the approach is to transform
the integral above to an approximately equal integral that can be efficiently evaluated.  This is
done by the following steps:

1. Transform the design variable distributions into standard normal distributions.  That is,
transform g(x) = 0 into g(u) = 0 where u is a vector of standardized, independent
Gaussian variables (see figure 3-16).
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2. Identify the most probable point (MPP), or design point.  For a given limit state function,
the main contribution to failure probability comes from the region where g is closest to
the origin in the transformed design variable space (u-space).  The MPP is defined as the
closest point to the origin in the transformed space.

3. Develop a polynomial approximation to the performance function (g-function) around the
MPP.  Thus the g-function is approximated by a simply defined (quadratic) surface
through that point (MPP).  Compute probability of failure using the newly defined g-
function and the transformed variables.

This technique is graphically depicted in figure 3-16.  Note that this is a three-dimensional
depiction of the problem.  For n-dimensional problems, there is a hypersurface g(u) = 0, which is
the boundary between failure and success, known as the limit state surface.

FIGURE 3-16.  TRANSFORMATION TO STANDARD NORMAL SPACE

3.7.5.1.1  Step 1Transform Variables.

FORM and SORM reliability approximations are carried out in the space of a set of standard,
uncorrelated normal variates Y, obtained by transforming the basic variables.  This
transformation is dependent on the form of the probability distribution of each variable.  The
advantage of doing this probability transformation is to be able to exploit the superior properties
of standard normal space.  Specifically, the probability density in this space is symmetric (see
figure 3-16) and it decays exponentially with the square of the distance from the origin.  The
transformation can be made in several ways.  The most accepted method is the Nataf model
[32] to transform a set of correlated, non-normal variables X = (X1, ......, Xn) to the space of
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uncorrelated standard normal variables U = U1,..., Un).  A paper [33] by E. Nikolaidis et al.
compares two commonly used methods.

Other attempts to improve on the fit between the transformed normal and original distribution are
in the probabilistic literature [17, 23].  The well-known the Numerical Evaluation of Stochastic
Structures Under Stress (NESSUS) probabilistic software uses a 3-parameter normal distribution,
with the third parameter adjusting the distribution to better fit in the tail region, which influences
the probability of failure [34].

The specific details of the different methods for transformation are mathematically complex and
lengthy and will not be given here.  References 17 and 23 give exhaustive details on this
transformation.

3.7.5.1.2  Step 2Identify Most Probable Point.

The MPP is the point on the limit state with the highest joint density, as can be seen in figure
3-16.  That is, the point is most probable because it has the maximum joint probability density or
largest contribution to failure.  The MPP can be found by using an optimization algorithm or
other iteration algorithms [23].  The optimization begins by guessing that the MPP lies at the set
of mean values of each variable involved.  Then the distance from the origin to the limit state
surface (or hypersurface) is minimized subject to the constraint that the point (MPP) lies on the
limit state.

The details of the optimization procedures are beyond the scope of this report; further details can
be found in references 17 and 23.  Determining the MPP is at the heart of these approximate
reliability methods, and many issues are involved such as dealing with correlated variables, the
type of search methods used in the optimization routines, and convergence criteria.

3.7.5.1.3  Step 3Develop g-Function and Determine Failure Probability.

The function g(u) is approximated by a polynomial in the vicinity of the MPP.  The first-order
reliability method (FORM) estimate is

P P gf = ≤ ≈ −( ) ( )0 Φ β

where β represents the minimum distance to the limit state.  Gradients of the polynomial function
are used to find the minimum distance.

Several second-order (SORM) approximations are available to improve accuracy.  These higher-
order approaches take into account the curvature of the limit state around the minimum distance
point.  The simplest of the SORM approximations, based on a paraboloid fitting, is from
Breitung [35]:

P P g kf i
i

n

= ≤ ≈ − + −

=

−

∏( ) ( ) ( ) /0 1 1 2

1

1

Φ β β

where ki denotes the ith main curvature of the limit state at the minimum distance point.  For
practical problems which usually have a large β value, the quadratic form of the limit state
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equation is a very good approximation of the actual probability.  There have been many
derivatives of the second-order approach to improve upon the accuracy of the approximation as
well as decrease the number of evaluation of the failure function.  These can be found in
reference 23.

3.7.6  General Discussion of Limit State Approximation Methods.

The FORM approach is not accurate for limit state functions with large curvature at the MPP.
SORM approaches are more accurate than FORM, but are more complex mathematically and
require more failure function calculations, which may be costly.  The accuracy of these methods
depends on how well the approximate g-function represents the exact g-function.  Perhaps the
most important feature of these methods is they can be used to perform sensitivity calculations.
Sensitivity factors can be calculated for each variable to determine the dominant variables, with
respect to probability of failure.

Only a high-level overview of these methods was given in this section.  The mathematical details
of these methods are, in general, very difficult for most industry engineers to comprehend.  There
are three published documents that contain highly detailed explanations of these methods along
with other facets of probabilistic analysis.

• Integration of Probabilistic Methods into the Design Process (SAE) [17]
• Modern Structural Reliability Methods (NASA) [23]
• Engineering Probabilistic Methods (SAE) [36]

3.7.7  Limit State Approximation Example Problem.

The stress applied to the bar depicted in figure 3-17 is denoted by S and is determined by
dividing the load P by the cross-sectional area, A (considered to be constant).  The resistive
strength is denoted by R.

Statistics of the design variables are as follows:

• R ∼ Normal:  µ =   60; σ =  6
• P ∼ Normal:  µ = 100; σ = 10
• A = 2.5  (deterministic)

Note that normal distributions for R and Q are assumed.  These distributions may actually be
Gaussian or may result from a non-normal distribution being transformed to a normal via the
approaches discussed in section 3.7.5.1.1.  The transformation of the original distribution to an
equivalent normal is a critical step in the limit state approximation approach.

The stress (load/area) distribution is formulated as

• Mean:    100/2.5 = 40
• Standard Dev:   10/2.5 = 4
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FIGURE 3-17.  ORIGINAL PARAMETER SPACE WITH VARIABLES R AND S

The limit state is formulated as

z = R - S = 0.
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This limit state equation can be seen in figure 3-18.  There is a theorem that states
The distance between the line L: Ax + By + C = 0 and the origin is given by

d (0, L)  =  
22 BA

C

+
.  Applying this theorem to the limit state equation yields the following

value for the distance: d = 
22

SR

SR ||

σσ

µµ

+

−
 = β.  We have thus derived the formula for the

distance from the origin to MPP (for linear limit state equation) in the reduced coordinate space,
shown in figure 3-18.

FIGURE 3-18.  REDUCED COORDINATES PARAMETER SPACE WITH
VARIABLES R AND S

Plugging in the values for the example, the limit state equation is z = 6 r - 4 s + (60 - 40) = 0.
The distance from the origin to this limit state is thus d = 20 / (62 + 42) = 2.77 = β.

The design point, as shown in figure 3-19, is thus

s*  =  4  (20)/(62 + 42) = 1.54
r* = -6 (20)/(62 + 42) = -2.31

The design point in the original parameter space is
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P* = 100 + (1.54)(10) = 115.40
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The resulting probability of failure is then estimated as P = Φ(-β) = Φ(-2.77) = 0.0028.  The
accuracy of this estimate is a function of how well the normal distributions model stress and
strength behavior.

FIGURE 3-19.  PROBABILISTIC FAULT TREE ANALYSIS METHODOLOGY

3.8  STEP 6DETERMINE SYSTEM PROBABILITY OF FAILURE.

Once failure probabilities of individual locations have been calculated, the last step is to
determine an overall probability of failure for the structural component or entire air vehicle.  If
all the N locations are independent, then the system probability of failure is calculated as

P Pf system f i

i

N

, ,( )= − −
=

∏1 1
1

In general, two structural locations are independent if the stress (or strength) of one has no
influence on (and cannot be used to predict) the stress (or strength) of the other.  This is
somewhat intuitive for material strength.  If, for example, a shear bay has a given material
strength, it says nothing about the material strength of the adjacent shear bay.  Only the material
variability determined through testing could be used to sample the strength.  So while the same
strength distribution might apply to each shear bay, the random sampling is what makes the
actual strength of one independent of the other.  Actually, the shear strength of each is
deterministica single valuebut is unknown, so we use statistics to address the uncertainty in
our prediction.
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If an aircraft structure were subjected to only one load condition and the stresses throughout
determined through analysis or testing, then the stresses would be totally dependent.  In fact, the
stress at one location could be used to predict the stress at any and all other locations.  However,
we know that aircraft structure is subjected to a variety of load conditions.  Assuming these
conditions are not simple linear multipliers of each other, the relationship between stress at any
two locations is not correlated over the totality of load cases.  In fact, they are so varied, that
from a statistical standpoint they can be considered completely uncorrelated.  This is how one
can justify the independence of locations from a stress standpoint.

For example, within a shear bay, the stresses are correlated (that is, regardless of load condition,
if we know the stress at one point, we know it everywhere in the bay), hence dependent.
Between shear bays, however, knowing the stresses in one is of no help in predicting the stresses
in the other, hence they are independent.

Fault tree analysis provides an organized means of identifying sources of structural system
failure and their interactions which lead to one of more failure paths.  Fault tree analysis theory
will not be addressed here; further information can be found in reference 37.  When dependency
exists, the probability of a fault tree becomes very difficult to calculate by analytical approaches,
and simulation approaches are more suitable.  But simulation may require excessive time.

To address this need for efficient means for performing fault tree analysis with dependence,
probabilistic fault tree methods were developed in the early 1990s.  One methodology [38] has
been integrated into the Southwest Research Institute’s NESSUS software.  The basic steps
involved are:

• Develop a fault tree to represent the structural system.

• Construct an approximate performance function for each failure event based on most
probable point (section 3.7.5).

• Determine sampling sequence.

• Calculate systems reliability using efficient Monte Carlo simulation (adaptive importance
sampling).

Figure 3-19 shows how failure modes and sequential failure can be modeled using a fault tree.
Sequential failures can be modeled using the PRIORITY AND gate.  A sequence of limit state
functions corresponding to a sequence of updated structural configurations with load
redistribution must be generated during the analysis.

One advantage to using this approach is the ability of the analysis to provide a probabilistic
ranking of the failure modes as well as problem variables.
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4.  SUMMARY OF INDUSTRY EFFORTS:  1980 THROUGH 1996.

Tables 4-1 and 4-2 list academia, industry, and government efforts in developing and applying
the probabilistic methodology.  Table 4-1 shows universities that have published research
pertaining to probabilistic methods.

TABLE 4-1.  PROBABILISTIC METHODS PUBLICATIONSACADEMIA

University Subjects Applicable to Aerospace
University of Arizona Probabilistic/Statistical Methods Development
Cleveland State University Probabilistic Composite Mechanics
Massachusetts Institute of
Technology

Probabilistic Calculation of Laminate Properties

State University of New York Probabilistic Composite Mechanics
Tennessee State University Probabilistic Methods Curriculum
University of Osaka Composites Design Optimization
University of Texas at San Antonio Probabilistic Material Strength Degradation
University of California, Berkeley Probabilistic Finite Element Method
University of California, Los
Angeles

Reliability-Based Structural Optimization

Vanderbilt University Probabilistic/Statistical Methods Development
Virginia Polytechnic Institute and
State University

Reliability-Based Structural Optimization

Wright State University Reliability-Based Structural Optimization

Table 4-2 shows industry and government efforts, listing the approximate year the effort was
started along with the subjects addressed and aircraft or aerospace components on which the
method was applied.  The approximate year started column is the year of the earliest publication
found.  This information was obtained from literature searches and subsequent research into
nearly 100 published technical papers and reports on the subject.

4.1  DISCUSSION AND EXPLANATION OF INDUSTRY EFFORTS.

Fifteen industry efforts into probabilistic analysis development and application will be
summarized in the following sections.  Each summary will include the type of problem being
solved and the basic theory of the probabilistic method.  In addition, references will be provided
for further study.

4.2  AIR FORCE.

One of the first, if not the first, efforts employing probabilistic methods in the aerospace
industry, by J.W. Lincoln [39, 40], was to assess the risk of structural failure due to unstable
cracking in older aircraft.  One risk assessment addressed cracking due to static overload on the
F-16 aircraft, while another assessed risk on the T-38 aircraft from fatigue cracking due to
repeated loads.  Probability of failure is determined from numerically integrating the applied
stress and component strength PDFs.



TABLE 4-2.  AEROSPACE COMPANIES WITH PUBLISHED PROBABILISTIC METHODS ARTICLES

Company
Approximate
Year Started Aerospace Subjects Addressed Published Aerospace Applications Material

Air Force 1980 Probabilistic/Statistical Methods Development
Acceptable Risk Levels
Aging Aircraft Risk Assessment

Risk Analysis: F-16 Wing,
T-38 Wing

Metallic

NASA Lewis 1984 Probabilistic/Statistical Methods Development
Probabilistic Composite Mechanics
Probabilistic Design for Composites
Probabilistic Fracture Mechanics
Defect/Damage Modeling
Probabilistic Thermal-Mechanical Fatigue
Probabilistic Fault Tree Analysis

Space Propulsion Components
Space Cantilevered Truss
Generic Composite Laminate Panel
Stiffened Composite Cylindrical
Shell
Generic Composite wing

Metallic
Composite

Southwest
Research
Institute (SwRI)

1984 Probabilistic/Statistical Methods Development
Probabilistic Finite Element Modeling
Probabilistic Fracture Mechanics
Probabilistic Fault Tree Analysis
Reliability-Based Optimization

Space Propulsion Components
Generic Truss Structure

Metallic

Jet Propulsion
Laboratory

1985 Probabilistic Certification
Probabilistic Fracture Mechanics

Space Propulsion Components Metallic

Rockwell 1987 Probabilistic/Statistical Methods Development
Probabilistic Finite Element Modeling

Space Propulsion Components
Orbiter Docking Frame Structure

NYMA (formerly
Sverdrup Co.)

1988 Probabilistic/Statistical Methods Development
Probabilistic Composite Mechanics
Probabilistic Design for Composites
Probabilistic Fault Tree Analysis
Probabilistic Thermal-Mechanical Fatigue

Space Propulsion Components
Generic Composite Laminate Panel
Stiffed Composite Cylindrical Shell
Generic Composite Wing

Metallic
Composite

Northrop
Grumman

1988 Probabilistic Design for Composites
Defect/Damage Modeling

Risk Analysis: B-2 Wing Section,
A-6 Wing, AV-8b Wing,
Lear Fan Wing

Composite

4-2



TABLE 4-2.  AEROSPACE COMPANIES WITH PUBLISHED PROBABILISTIC METHODS ARTICLES (Continued)

Company
Approximate
Year Started Aerospace Subjects Addressed Published Aerospace Applications Material

Aerospatiale
(France)

1989 Inspection Interval Determination
Probabilistic Certification
Damage Modeling

ATR72, Airbus 330, 340 Metallic
Composite

Pratt & Whitney 1989 Probabilistic Fracture Mechanics Turbofan Engine Components Metallic
General Electric 1990 Acceptable Risk levels

Probabilistic Fracture Mechanics
Turbofan Engine Components Metallic

NASA Marshall 1991 Probabilistic/Statistical Methods Development
Probabilistic Structural Dynamic Analysis

Generic Beam Structure

Thiokol
Corporation

1991 Probabilistic Design for Composites Solid Rocket Motor Composite

NASA Langley
Research Center

1992 Reliability-Based Structural Optimization
Probabilistic Fatigue Analysis

Generic Truss Structure

TsAGI (Russia) 1993 Probabilistic Design for Composites
Defect/Damage Modeling

Lear Fan Risk Analysis Composite

Grumman
Aerospace

1993 Probabilistic Design for Composites Validation Test of IPACS
Composite Material Analysis
Program

Composite

Nanchang
Aircraft
Company (China)

1994 Probabilistic/Statistical Methods Development Generic Wing Structure

Alpha STAR
Corporation

1996 Probabilistic Design for Composites Unknown Composite

4-3
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Lincoln defines cumulative probability of failure as P(X > x), which is different than the typical
statistics textbook definition, P(X < x).  Given an expected number of exceedances for a given
stress level during one flight hour, E, the probability that stress is exceeded during a single-flight
hour is calculated by:

E ≥ 1 ⇒ P = 1
E < 1 ⇒  P = E

Essentially, the method equates expectation with probability, which significantly loses accuracy
for expectations greater than ∼ 0.1.  For example, just because 20 ksi is exceeded on average 1
time per flight hour (FH) does not mean that it will be exceeded every FH.  However, the
approximation is good for E → 0, which is the critical part in his probabilistic analysis.

Extrapolation of the stress exceedance curve is critical to the calculation of failure probability.  A
fit of this probability function was done using Weibull plotting techniques [41], whereby the
shape and scale parameters were found.  The function was then extrapolated beyond measured
data.  The total wing probability of failure takes all locations into account statistically by
assuming independence and uses a series reliability calculation.  This failure probability is time
dependent since the crack length is time dependent; therefore, the analysis must be rerun to
assess the single-flight failure probability after different accumulated flight times.

Lincoln’s method has a “restoration” feature, wherein repair of a crack is simulated.  The
strength of the component can be restored to its original strength.  Probability of crack detection
(called wing inspection reliability) is used in the analysis, hence inspection intervals can be
studied and optimized.  This method thus provides a means to assess the impact of different
inspection intervals on failure probability.

4.2.1  F-16 Risk Assessment.

In this assessment, the risk due to cracking from static overload was analyzed.  The method uses
numerical integration to determine the joint probability of an applied stress and material strength
distribution.  The general procedure was as follows:

1. Establish an allowable failure rate.

2. Determine PDF for applied stress from load exceedance as described above.

3. Determine PDF for material strength from wing skin measurements, yield strength test
measurements, and MIL-HDBK-5 mechanical property data.

4. Calculate failure probability using numerical integration.

This analysis provided a measure of single-flight probability of failure for the most severe load
profile.  This was a static strength analysis, focusing on finite stresses rather than crack-like
singularities.  No crack growth was modeled.
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4.2.2  T-38 Risk Assessment.

T-38 service flight loads data showed that a mission change made the load environment
considerably more severe than used in its initial damage tolerance assessment.  A subsequent
deterministic assessment showed that the inspection frequency should be increased by a factor
of 3.  A risk assessment was performed to determine if this increased inspection was essential to
safety.  Unlike the F-16 analysis, the risk T-38 analysis was based on crack growth models.
Probability of failure of a particular location on the wing was based on the joint probability of
exceeding a given stress level and attaining a critical crack length.  Also factored into the method
is the probability of crack detection.  The general procedure was as follows:

1. Determine the PDF for applied loads based on flight loads exceedance functions
normalized using expected exceedances per flight, then fit using a 2-parameter Weibull
distribution.  This is the same procedure used in the F-16 analysis.

2. Define the crack population based on tear-down data from 19 aircraft.  Normalize the
data to an average flight time using traditional fracture analysis (some cracks were
artificially grown while others on high-time aircraft had to be decreased).

3. Fit a cumulative distribution function to the crack data at the average flight time.

4. From structural analysis methods, determine critical crack length versus applied stress at
the analysis locations.

5. Using fracture mechanics theory, develop crack growth curves (crack length versus flight
hours) at the analysis locations.

6. Develop a crack length versus probability of detection curve.

7. Calculate failure probability using numerical integration to determine the joint probability
of exceeding an applied stress and attaining a critical crack length.

4.3  NASA LEWIS.

C. Chamis, of NASA Lewis, has been instrumental in the development of probabilistic design
methods and analysis, particularly for space propulsion (turbine engine) components and more
recently for composite structure.  The early work, begun in the mid-1980s, was funded via the
Probabilistic Structural Analysis Methods (PSAM) project.  This was in response to a need for
quantifying component reliability on the space shuttle program, in light of the Challenger
accident.  Southwest Research Institute was NASA Lewis’ primary contractor for development
of probabilistic structural analysis methods.

The PSAM project’s goals were to develop a comprehensive structural analysis system capable
of modeling uncertainty in loading, geometry, material behavior, and boundary conditions.  The
target application was space propulsion components.  From this came the Numerical Evaluation
of Stochastic Structures Under Stress (NESSUS) probabilistic finite element computer program.
NYMA Inc. participated in applying the NESSUS program and in subsequent development
efforts in composite probabilistic methods.
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The analytical procedures used in NESSUS are discussed in section 3.7.5.  The development and
description of the probabilistic finite element software NESSUS will be discussed in the section
describing the work done at Southwest Research Institute.  Discussion of applications of the
NESSUS software will appear in several subsequent sections, as several aerospace companies
have NESSUS applications.

4.3.1  Integrate Probabilistic Analysis of Composite Structures (IPACS).

Chamis led the NASA Lewis effort to develop a probabilistic design methodology for
composites.  NYMA Inc. was subcontracted to perform most of the development work, the result
being the IPACS methodology [42, 43] which combines composite micromechanics theory,
structural mechanics, system concepts, and manufacturing considerations.  Figure 4-1 shows a
schematic of the program.  The methodology starts with fiber mechanical and physical
properties, resin properties and fiber placement techniques, and then applies a micromechanics
approach to produce a laminate theory.  This is followed by a probabilistic finite element
analysis utilizing the structural analysis.  IPACS does not require extensive specimen testing
which is cited by many as adding to the cost of composite applications.

PICAN, structural response simulator, and FPI (an extension of the first- and second-order limit
state approximation method) have been integrated into the computer code IPACS for
a comprehensive probabilistic assessment of composite structural response.  As depicted in
figure 4-1, IPACS consists of two computer modules:  (1) PICAN, for simulating probabilistic
composite mechanics and (2) NESSUS, for simulating probabilistic structural responses using
the information obtained from PICAN.  These two modules can simulate uncertainties, from
constituent materials to the composite structure including its boundary loading conditions, and
environmental effects [44].

IPACS

FIGURE 4-1.  INTEGRATED PROBABILISTIC ANALYSIS OF COMPOSITE
STRUCTURES (IPACS)

Figure 4-2 shows the physics which forms the basis for the IPACS code.  The assessment starts
with the identification of primitive variables at the micro and macro composite scales including
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the fabrication process.  These variables are selectively perturbed several times in order to create
a database for the determination of the relationships between the desired material behavior and
structural response and primitive variables.  Composite micromechanics is used to carry over the
scatter in primitive variables to the ply and laminate scales (steps A and B in figure 4-2).

Laminate theory (via ICAN) is then used to determine the scatter in the material behavior at the
laminate scale (step C).  This leads to the perturbed resultant force, moment-strain, and curvature
relationships used in the structural analysis.  Next, the finite element analysis is performed to
determine the perturbed structural responses corresponding to the selectively perturbed primitive
variables (step D).  This completes the description of the hierarchical composite material and
structure synthesis shown on the left side of figure 4-2.

FIGURE 4-2.  NASA LEWIS COMPOSITES PROBABILISTIC ANALYSIS

Steps E through G show the progressive decomposition of the structural response to the laminate
(E), ply (F), and fiber and matrix (G) constituent scales.  After the decomposition, the perturbed
fiber, matrix, and ply stresses can be determined.  Fast probability integration (FPI) [25] is used
to determine the functional relationship between the response (e.g., compressive strength) and
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primitive variables.  The CDF of the response is then calculated using this functional
relationship.

4.3.2  Integrated Composite Analyzer (ICAN).

ICAN simulates composite material behavior starting from the lowest composite scale (fiber and
matrix constituents) to higher scale (ply, laminate).  Micromechanics and laminate analysis based
on linear elastic theory are used to compute constituent, ply, and laminate level properties
required for the global structural analysis.  ICAN also decomposes the global structural response
to laminate, ply, and constituent response levels (stress and strains) which helps the user to
evaluate failure, as shown in figure 4-2.  Failure analysis is performed based on different failure
criteria such as first-ply failure criteria, fiber break criteria, modified distortion energy criterion,
and Hoffman’s criteria [45].

4.3.3  Probabilistic Integrated Composite Analyzer (PICAN).

ICAN has been integrated with FPI, leading to PICAN for the probabilistic assessment of
composite mechanics.  PICAN starts with defining uncertainties in material properties and
fabrication variables at the most fundamental scale.  Then the uncertainties are progressively
propagated to higher scales.  Probability density and cumulative distribution functions can be
obtained at the various composite scales for all material properties and fabrication variables.
Sensitivity of various design variables to composite material properties is also obtained [46].

4.3.4  Adaptive Importance Sampling (AIS).

AIS is different from traditional Monte Carlo importance sampling methods for its ability to
automatically adjust, and thereby minimize, the sampling space.  AIS is embedded in NESSUS.
There are two features of this method:  (1) the sampling region is focused on the most important
region where it has the highest possibility of failure, and (2) the sampling region is gradually
increased by deforming the sampling boundary until the sampling region covers the failure
region sufficiently.  More details can be found in references 17 and 23.

4.3.5  Probabilistic Fault Tree Analysis (PFTA).

With traditional Fault Tree Analysis, probabilities for basic events are determined which are
assumed to be independent.  However, when dependency exists between basic events, Monte
Carlo simulation is one method that can offer accuracy.  PFTA, which is embedded into the
NESSUS software, can also address this dependency as well as calculate system reliability.
PFTA can also deal with a structural system having multiple failure paths due to multiple
components or multidesign criteria.  More details can be found in section 3.8 of this document
and references 23 and 35.

4.3.6  Multifactor Interaction Equation (MFIE or TMFIE).

To account for the degradation or aging of material properties due to cyclic loads, the MFIE
model was developed at NASA Lewis.  MFIE has been used to simulate long-term behavior of
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polymer matrix composites and is planned for application to the high-speed civil transport
(HSCT) design.

MFIE evaluates the magnitude of degradation and properties of constituent materials at every
time step, which in turn is used for micromechanics and laminate analysis at each step.
Sensitivity evaluations of response variables to the random variables at every time step are also
performed to compute the respective scatter in response variables.  More details can be found in
references 47 and 48.

4.3.7  Parallel Virtual Machine (PVM).

The PVM is an integrated framework for heterogeneous network computing, allowing scientists
to exploit a series of networked machines when carrying out complex scientific computations.
With the use of a message sent over the network, multiple tasks of an application can be
incorporated to solve a problem in parallel.

PVM is conducted within the IPACS software.  Information needed for individual perturbation
finite element analysis is sent to an available workstation by PVM message passing routines.
Individual finite element analysis is then carried out at each workstation.  Once perturbation
analysis is complete, structural responses are sent back to the control workstation.  After all
results are returned to the control station, limit state approximation methods to compute
probability of failure are performed.  More details can be found in reference 49.

4.3.8  Blade Assessment for Ice Impact (BLASIM).

BLASIM is a specialized code for turbofan engine compressor blades subjected to ice impact,
simulating local and far-field damage in many different blade-type structures.  Capabilities
include static, dynamic, resonance margin, and supersonic flutter simulation.  Various types of
loading including pressure, temperature, and centrifugal can be applied.  A coarse finite element
mesh consisting of triangular plate finite elements can be generated with minimal execution time
[50].

4.3.9  Recent Work by NASA Lewis.

A technical paper [51] was published in 1996 describing computational methods to
probabilistically simulate fracture in bolted composite structures.  An approach that is
independent of stress intensity factors and fracture toughness was used to simulate progressive
fracture.  A fast probability integrator assessed the scatter in the composite structure response
before and after damage.  These methods were demonstrated for a bolted joint of a polymer
matrix composite panel under edge loads.

4.4  SOUTHWEST RESEARCH INSTITUTE (SwRI).

Nearly 40 technical papers on probabilistic analysis from SwRI authors have been presented
since 1986.  The work was funded from the NASA Probabilistic Structural Analysis Methods
(PSAM) project, which was (what ended up to be) a 12-year research and development program,
which SwRI was the prime contractor.  Rockwell Corporation and several universities were
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subcontractors for this effort.  The project was funded in 2 phases:  (1) probabilistic structural
response analyses of the space shuttle main engine components (1984-1989) and (2) structural
system risk assessment, qualification, certification, and health monitoring (1990-1995).  The
objective of the program was to develop probabilistic structural analysis methods for critical
space shuttle main engine (SSME) metallic components such as turbine blades, transfer ducts,
piping systems, and liquid oxygen posts.

A major accomplishment of the PSAM program was the development of the NESSUS computer
program, which integrates limit state approximation and efficient Monte Carlo methods with
general structural analysis capabilities.  This can be classified as a probabilistic finite element
tool.  Rockwell Corporation has applied NESSUS to critical SSME components; this is discussed
in section 4.6.1.  The NESSUS program has also been used in geomechanics, nuclear waste, and
rotordynamics research [52-54].

NESSUS numerically simulates structural mechanics and design variable uncertainties using
limit state approximation methods integrated with finite element and boundary element methods.
The output provides (1) probability of failure calculations and probability distribution analysis
(e.g., generating a stress distribution) and (2) probabilistic sensitivity analysis to identify critical
failure modes and random variables.  Figure 4-3 show NESSUS capabilities.  It appears to be a
very impressive probabilistic analysis tool.

FIGURE 4-3.  NESSUS FEATURES AND CAPABILITIES
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4.4.1  Probabilistic Methods in NESSUS.

Figure 4-3 lists Fast Probability Analysis under the heading Probabilistic Methods.  This method,
developed by teams headed by Y.-T. Wu of SwRI, contains first- and second-order reliability
methods (FORM/SORM), convolution, advanced first order, conventional Monte Carlo, and
Monte Carlo with efficient sampling.  Wu led pioneering efforts in extending FORM/SORM
techniques to develop the Advanced Mean Value First-Order (denoted AMV+) method to better
account for nonlinear performance functions.

In addition, he led development of a fast convolution method, which used the convolution
theorem and the fast Fourier transform (FFT) technique to compute the probability of failure
when the approximate linear or quadratic g-functions involve independent, non-normal random
variables.  This fast convolution method can calculate the exact probability of failure for a
linearized performance function. Therefore, once the function is linearized, this procedure can be
applied to compute accurate probability of failure results.

From 1990 to 1994, much of the method development focused on Adaptive Importance
Sampling (AIS) Monte Carlo to compute reliability and design parameter sensitivities.  In this
approach, sampling is focused around the failure domain, thereby minimizing over-sampling in
the safe region.  Significant efficiency can be gained relative to conventional Monte Carlo
simulation.  This is discussed in section 3.7.3.4.

4.4.2  Performance Functions in NESSUS.

In addition to stress, strain, and displacement analyses, the scope of the code was expanded in
1992 to include probabilistic life and fatigue prediction of structures.  In 1994, NESSUS could
handle problems governed by linear elastic fracture mechanics where the crack path, weight
function, Green’s function, i.e., or influence function, was known.  The stress intensity factors
are determined using the stress along the crack path of the uncracked body.  The stress along the
crack is determined by finite element analysis of the uncracked structure.  Figure 4-4 depicts the
NESSUS probabilistic fatigue crack growth algorithm.

What dictates failure in real structures will usually be a sequence or interaction of individual
failure modes.  To address this, a probabilistic fault tree analysis methodology was embedded
into NESSUS.  As discussed in section 3.8, a fault tree provides a systematic way to deal with
multiple failure paths composed of multiple components and/or multiple failure modes.

In traditional fault tree analysis, probabilities are assigned to the bottom events, and propagated
through gates (AND, OR, etc.).  For typical structural reliability analysis problems, however, the
failure events will often times be correlated due to sharing common variables.  To account for
this dependency, it is necessary that the limit state functions, rather than simply the probabilities,
be used to define the bottom events.
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FIGURE 4-4.  NESSUS PROBABILISTIC FATIGUE CRACK GROWTH ALGORITHM

4.4.3  Recent Work.

SwRI is involved in (as of 1997) development of a damage tolerance design code to augment the
safe-life approach.  The goals are to produce a probabilistic design code capable of being
interfaced with external finite element and fracture mechanics codes, providing risk sensitivities
that identify the relative importance of input parameters.  The project targeted engine rotor
design and analysis [55].
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4.5  JET PROPULSION LABORATORY (JPL).

In 1985, the JPL Engine Certification Project was initiated to develop an improved methodology
for quantitatively evaluating and establishing flight readiness (certification).  The program was
entitled Probabilistic Failure Analysis (PFA).  The Challenger accident (1986) impacted the
development of this technology in several ways.  First, Professor Richard Feynman, during the
failure investigation, determined that design engineers believed the risk of engine failure to be
about 1 in 200; higher management understood the risk to be 1 in 100,000 [56].  Somewhere
between design and certification, the real information was being lost.  NASA began to examine
different approaches for identifying risk, perhaps at the design level.  Risk could then be elevated
to certification in a quantitative procedure, rather than qualitatively implied from the safety
factor.

The second influence of the Challenger accident was that a significant amount of money was
appropriated for the advancement of safety and risk technology.  In addition to the JPL Engine
Certification project, the Probabilistic Structural Analysis Methodology (PSAM), described in
section 4.3, received large sums of funding.

In 1988, an effort was initiated with the Marshall Space Flight Center to begin technology
transfer of the JPL probabilistic methods.  From 1988 through 1990, little progress was made.
The PFA technology (described below) as defined, documented, and presented was extremely
difficult for the reviewers to penetrate and understand.  Because of this, coupled with the fact
that it was not being applied, the PFA program was cancelled by the Shuttle Program Office.
Later, it was reinstated with limited funding through 1992, during which time a new Marshall
team was formed, and together with JPL members, were tasked to (1) gain a thorough
understanding of the PFA method, (2) assess the utility of the method along with supporting
software tools, and (3) develop a plan for the technology transfer of the method to NASA
Marshall.

4.5.1  PFA Methodology [57].

Figure 4-5 depicts the PFA methodology.  For each critical failure mode, information comes
from two sources: operating experience and engineering analyses.  Operating experience may
consist of success/failure data, development testing, flight operations, and certification testing,
etc.  Engineering analyses characterize the conditions under which specific failure mode may
occur, such as pressure, accumulated time in service, etc. Within the engineering analyses,
parameter uncertainties and failure mode models are merged with the quantitative model of the
failure phenomenon.

PFA utilizes a FEM to develop a response surface equation, which is based on a design of
experiments approach (described in section 3.7.4).  After a closed-form relationship is defined
between the input and output parameters, direct Monte Carlo simulation is applied to establish
the failure model.  After finishing the engineering analyses, the prior failure probability, which is
called prior distribution, can be estimated.  Then, a Bayesian statistical algorithm is used to
update this prior distribution to reflect available success/failure data.  The system failure risk
estimate for service life is performed with one or more relevant failure modes using their
probability distributions from the Bayesian analysis to arrive at the probability of a failure
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FIGURE 4-5.  PROBABILISTIC FAILURE ASSESSMENT METHODOLOGY

occurring during a mission or set of missions.  By conducting sensitivity analyses, the
responsible drivers can be identified and subsequent corrective action can be taken.

The PFA methodology has been applied to high-cycle [58] and low-cycle fatigue [59] failure
analysis, as well as flaw propagation [60].

4.5.2  NASA Marshall Conclusions and Recommendations [56].

After evaluating the PFA method and software for 18 months, the MSFC task group said that
while recognizing the ground breaking efforts of the JPL team, that succeeded in introducing and
advancing the probabilistic approach within NASA, the PFA approach could not be easily
understood and practically applied and therefore should not be adopted for probabilistic
structural analysis at NASA.  The team also reviewed the NESSUS procedures and methods and
said it had potential to become a standard design tool for probabilistic analysis in NASA
applications.  The specific criticism of the JPL approach stemmed from the reports documenting
the approach being difficult to comprehend, the Bayesian updating concept appeared
unnecessary (and complex), and the methodology was very application specific (software must
be restructured for different applications).
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4.6  ROCKWELL INTERNATIONAL CORPORATION.

The Rocketdyne Division of Rockwell International, having design and manufacturing
responsibility of the space shuttle’s main engine, was obviously an integral part of the
development and application of NASA Lewis’ Probabilistic Structural Analysis Methods
program.  One particular application of the NESSUS code was the high-pressure fuel turbopump
(HPFTP) turbine blade on the main engine.

4.6.1  SSME Turbopump Blade Application.

This example became well known and was the subject of numerous technical papers [61 through
64] and presentations at technical conferences.  The example describes a method of obtaining
probabilistic (dependent) pressure, temperature, and centrifugal steady-state load descriptions of
the second-stage turbine blade from the top of the airfoil to the intersection with the “fir tree”
(the fir tree-shaped attachment region at the inner end of the blade).

Rocketdyne applied NESSUS to determine the structural response of the turbopump blade shown
in figure 4-6.  The finite element model shown has about 6,000 degrees of freedom.  Random
design variables for the blade consisted of nine manufacturing variables and nine loading
variables.  Manufacturing variables include three rigid-body orientations of the airfoil (associated
with the process of machining used on the blade root), three orientations of the cubic single
crystal being evaluated, and three material properties for the single crystal.  The nine loading
variables concerned operating conditions for the turbopump, each of which had some predictable
effect on rotor speed, blade temperature, and pressure loading conditions for steady-state
operation.

FIGURE 4-6.  SSME HPFTP SECOND STAGE TURBINE BLADE FE MODEL

Engine simulation was used to define the effect of each design (operating condition) variable on
the three loading conditions.  Results of the NESSUS analysis are plotted in figure 4-7.  The two
parts of the figure correspond to the two limiting locations identified on the finite element model.
The plots depict the CDF of effective stress at both locations.  Of most importance in the design
study were the probabilistic sensitivity or importance factors shown.  At location A, the
dominant factor was hot-gas seal leakage, resulting in the highest blade stress.  At location B,
two single crystal orientations were among the most dominant factors.

Location B

Location A



4-16

FIGURE 4-7.  NESSUS CDF RESULTS FOR LOCATIONS A AND B

4.6.2  Probabilistic Analysis Methodology Development Efforts.

Around 1990, a multiyear research project began at Rockwell to develop a finite element-based
first-order reliability analysis method.  The objective was to develop probabilistic methods and
algorithms that could be integrated with finite element structural analysis.  The result was a
computer program named Finite Element-Based Reliability (FEBREL).  The probabilistic
methods in FEBREL provide a means of modeling uncertainties, computing probabilities, and
performing sensitivity analyses [66].

M. R. Khalessi led development of a Most Probable Point Locus (MPPL) procedure, which is
incorporated into FEBREL.  This procedure applies to limit state approximation methods.  The
procedure examines the performance (g) function along a most probable point locus in search of
the most probable point(s) on the limit state surface and identifies unusual conditions, such as
multiple most probable points.  This addressed a published criticism that limit state
approximation methods may not converge or there may exist multiple minimum points (values of
beta).

An interface program was developed to enable data transfer between FEBREL and MacNeil-
Schwendler Corporation’s MSC/NASTRAN finite element software.  Demonstration examples
of both static and dynamic problems are given in reference 67.  Figure 4-8 shows the FEBREL-
MSC/NASTRAN structure.  FEBREL was also interfaced to the LS DYNA-3D finite element
package and applied to perform a probabilistic transient dynamic impact analysis of a horizontal
7-ft free fall of a U.S. Army munitions container onto a rigid surface [68].
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FIGURE 4-8.  FEBREL-MSC/NASTRAN CODE STRUCTURE

4.7  NYMA, INC.

Formerly called Sverdrup Technology, NYMA has been a subcontractor to NASA Lewis
Research Center, primarily in development of probabilistic analysis methods associated with
composites.  NYMA led the development of the Integrated Probabilistic Assessment of
Composite Structures (IPACS) software which is described in section 4.3.

For long term behavior prediction of composites, the ICAN computer code was modified to
implement time dependent multifactor interaction equations (MFIE) and perform sensitivity
evaluation  for random variables [47, 48].  A discussion of MFIE can be found in section 4.3.6.
MFIE was expanded to include time-dependent degradation effects of composite material
behavior due to environmental, fabrication and load effects.  The result was a module to
NESSUS called TMFIE.

A methodology to compute probabilistic fatigue life of polymeric laminated composites was the
subject of a 1995 technical paper.  Matrix degradation effects due to long term environmental
exposure and mechanical and thermal cyclic loads are accounted for via simulation.  Several test
cases were run using graphite/epoxy laminates.

In addition, NYMA led the effort to incorporate a parallel processing capability into the IPACS
software.  This capability (denoted PVM) is discussed in section 4.3.7.  Recent work includes
probabilistic simulation of progressive fracture in composite laminated bolted joints [69].

4.8  AEROSPATIALE.

The work of Rouchon et al. in composite probabilistic analysis [70] primarily deals with
probabilistic inspection.  This issue is related to damage tolerance in connection with accidental
service induced damage.  Accidental damage is addressed through a scheduled inspection
program based on the proportion of flight time variable.  The proportion of flight time is defined
as follows:
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Proportion of flight time = probability of failure per flight hour × avg. time in failed condition,
where the average time in failed condition is assumed to equal 50% of the interval of time
between inspections.

The methodology requires a comprehensive database on the probability of impact damage on
structures, allowing for the components involved, aircraft operating conditions, damage location,
etc.

Probabilistic analysis was used to determine inspection intervals such that the probability of
failure was no greater than 1.0 × 10-9/flight hour.  The expression for PF is

PF = ∫ P(at) Pr(at) [1-Pd(at)] d(at)

where

P(at) is the probability of occurrence of damage size “at,”
Pr(at) is the probability of load exceeding the residual strength for damage size “at,” and
Pd(at) is the probability of detecting damage of size “at.”

It is not stated if these functions are PDFs or CDFs, but P(at) should be a PDF, while Pr(at) and
Pd(at) should be CDFs.  The integration is over possible damage sizes “at.”  For a specific “at,”
they multiply its incremental probability [P(at all)] by (1) the probability that the load is greater
than r(at), which is the residual strength at the value “at” (note that as “at” increases, this
probability approaches 1, thus is a cumulative probability) and (2) 1 minus the probability that
the defect “at” is detected (note also that as “at” increases, this probability approaches 1, thus is a
cumulative probability also).  Then the integration over all values of “at” of this three-factor
product yields the PF.

This methodology makes the following assumptions about requirements on probabilistic and
conditional probabilistic measures:

• Acceptable probability of structural failure is < 1 × 10-9 per flight hour.
• Probability of occurrence of a defined damage size is < 1 × 10-5 per flight hour.
• Probability of experiencing limit load and gust is < 2 × 10-5 per flight hour.
• Probability of experiencing ultimate load is < 1 × 10-8 per flight hour.

Relationships between various impact energies and damage sizes due to events such as tool drops
are used to define P(at).  The paper does not show the function Pr(at).  A mean and standard
deviation for the probability of occurrence of a given load level per flight is obtained from the
probability of exceeding limit load and exceeding ultimate load per flight hour due to gust.

There is no description of the residual strength vs. damage size relationship, only that it can be
defined.  The paper does not show the function Pd(at), but it does give a mean value and “A”
value for indentation damage size for three inspection methods:  visual, external detailed visual,
and internal detailed visual.
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Rouchon recommended that the inspection program require a probabilistic approach for its
determination [71].  The probabilistic inspection concept is a new approach to certification which
allows for inclusion of the maintenance philosophy at the design stage.  The concept depends on
a random sample size of aircraft to be chosen from the fleet for inspection.  The next inspection
time is defined based on findings from current inspection.  Total probability of failure includes
not only the probability of structural failure but also the probability of failure due to structural
damage which was undetected by the inspection program.  Optimum definition of time between
inspections and optimum life-cycle cost may be achieved by using this approach.

Rouchon illustrated the approach on inspection scheduling for the ATR72 aircraft [72]. The
inspection interval is determined such that larger impact damage, where residual strength after
impact is between limit and ultimate, corresponds to a calculation of the stress-strength failure
probability which is less than 10-9 per flight hour.  Low-level impact damage, which does not
reduce strength below ultimate, is covered by demonstration of no growth for the life of the
aircraft.  Figure 4-9 shows all inspection decisions as a function of residual strength after impact
damage, length of inspection interval, and the corresponding probability of failure.
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FIGURE 4-9.  INSPECTION CRITERIA AND PROBABILITY LEVELS

4.9  PRATT & WHITNEY.

Pratt & Whitney is developing a general Probabilistic Design System (PDS) for gas turbine disks
under a 5-year contract of the sponsorship of the Air Force Material Command-Wright
Laboratory [73].  The Air Force sponsored program is comprised of six phases:

            Phase I Data Acquisition Phase IV Application
Phase II Method Development Phase V Application Test
Phase III Validation Test Phase VI Method Extension
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Phases I and II were completed in early 1994.  Comparison of the design system to field
experience and subscale disk testing was conducted in Phase III.  The benefits of the statistical
approach to rotor design will be evaluated in Phase IV.  The turbine rotor, to be designed by
probabilistic methods, will be tested in Phase V.  Suggestions for modifying the United States
Air Force Engine Structural Integrity Program (ENSIP) by using probabilistic design will be
made in Phase VI.

The goal of the PDS program is to reduce engine component weight by integrating  deterministic
design methods and tools with probabilistic design methods.  A key to achieving this goal is to
develop a probabilistic analysis system that would be used by designers in the mainstream design
process.  To accomplish this, there are four criteria addressed in reference 74:  (1) probabilistic
design must be based on existing tools used in deterministic design; (2) probabilistic design must
require only a small amount of additional time over that required for current deterministic
design; (3) results must be quantifiably accurate; and (4) the software and method must be user-
friendly.

Anticipated payoffs from using probabilistic methods in gas turbine engine design include rotor
weight reduction, increased design life and rotor speed, risk quantification, and availability.

4.9.1  Methodology.

In the referenced papers [74, 75], the term design variable (e.g., stress, LCF life, plastic growth)
refers to what is normally called a response or output variable, and life driver (e.g., temperature,
modulus) refers to an input variable.  The method entails selecting representative combinations
of the input variables to produce representative values of the response variable.  The philosophy
is that achieving an extreme response is more likely due to all input variables being at
moderately extreme values than due to one being at an extreme value while the others are near
nominal.  The approach is depicted in figure 4-10 and the general steps taken are:

1. Find the driver factors and distributions associated with these factors.  To obtain these
distributions for the design variables, it is necessary to describe the basic life drivers with
appropriate statistical probability distributions.  A Box-Behnken experimental design is
utilized to select representative combinations of life drivers.  More details can be found in
references 25 and 27.

2. Create statistical distributions of the output variables due to uncertainties which were
specified for the input variables.  Take the results from the Box-Behnken matrix and fit a
second-order response surface regression equation using stepwise regression.

3. Evaluate the response surface equation.  Two steps to achieve this are (1) to run a
stepwise regression model which will select the variables from a large list of candidate
variables which do the best job at explaining the variability in the response variables of
interest and (2) to determine whether this resulting response surface model adequately
approximates the design code.  Additional details about assessing goodness of response
surface in this methodology can be found in reference 76.
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4. Calculate the probability of failure.  Use Monte Carlo simulation to obtain the
distributions of output variables, since it is very easy to evaluate a response surface
equation by simulation.

FIGURE 4-10.  STRUCTURE OF PRATT & WHITNEY PROBABILISTIC DESIGN SYSTEM

4.9.2  Box-Behnken Experimental Design Procedure.

The following is an explanation for the case of three input variables in the Box-Behnken
approach.  Imagine a cube whose volume represents all possible combinations of three
continuous input variables.  The center of this cube would correspond to the input variables at
their nominal values.  The corner points represent the eight possible combinations of the three
input variables at their extreme values:  (Low, Low, Low), (Low, Low, High),… (High, High,
High).

The Box-Behnken Matrix method does not evaluate the response variable for the eight corner
points of this cube.  Instead, it considers those 12 points where two of the input variables are at
extreme values and the other is at nominal, corresponding to the midpoints of the 12 edges
comprising the cube.  It also considers the center point of the cube, thus bringing the total
number of deterministic evaluations to 13.

Box-Behnken Matrix

          X1     X2   ....    Xp

   1     -1       0            -1
   2     -1       0           +1
   3    +1       0            -1
    .       .        .              .
    .       .        .              .
   n       0      -1           +1

Time-Consuming Design
Code Inputs:  X1, X2, ..., Xp

  Outputs: Y1, Y2, ..., Yn

Use Regression Techniques to
Obtain Response Surface Model
(i.e., an approximation to the
time-consuming design code)

Y = f(X1, X2, ..., Xn)

Generate Random Values
for the Life Drivers

         X1                      Xp

Sensitivity Plots

 Y

              Xi

Distribution Plot for the
Output Design Variable

  Y

 . . . .



4-22

The regression equation consisting of an intercept term, linear terms, and quadratic terms
(including interaction terms) is then fit to the 13 data points: (x1,x2,x3,y)i , i=1 to 13.  For the
three input variable case, the equation consists of 10 parameters (bi):

y = b0 + b1x1 +b2x2 + b3x3 + b4x1
2 + b5x2

2 + b6x3
2 + b7x1x2 + b8x2x3 +b9x1x3

where y is the response and x1, x2, and x3 are the input variables.

The number of parameters in the regression ( = ½[n+2][n+1], where n is the number of input
variables) and the number of Box and Behnken evaluations are shown in table 4-3.  Monte Carlo
simulation is used to sample from the input variables’ PDFs, and the response is calculated using
the regression equation.  The response PDF is then formed from the numerous responses
generated.

TABLE 4-3.  BOX-BEHNKIN DESIGN OF EXPERIMENTS PARAMETERS

n Parameters Number of B&B Evaluations
3 10 13
4 15 25
5 21 41
6 28 49

4.9.3  Summary and Discussion of Pratt & Whitney Method.

Two things must happen if this method is to work:  (1) the input variable PDFs must be accurate,
and of greater concern (2) the regression routine must be reasonable.  For example, in the three
input variable case, only 13 points are used to determine a best fit equation with 10 parameters!
However smart the regression routine is in eliminating terms of little significance, the user
should note what terms are left and see if they make sense, especially the interaction terms xixj.

The authors claim that the regression equation should do an excellent job of predicting the
response, as long as low values and high values for the input variables are selected in the
moderately extreme region.  For the example given in the paper, it did just that.  There were six
input variables, thus 49 deterministic evaluations.  The regression routine managed to do a best
fit with 11 parameters out of the possible 28, through elimination of insignificant terms.
Examples were given of how small deviation existed between the regression equation’s
predictive value and the actual value.  Naturally, this comparison could only be made at the 49
points deterministically evaluated.  Hopefully, the true response and the regression-predicted
response at points away from the 49 are in agreement (i.e., there are no cliffs in the response
within the moderately extreme values of the input variables).

Sensitivities can be determined in two ways:  (1) plot the data obtained from the Box-Behnken
matrix by selecting one output and one input variable and (2) use the response surface equation
and differentiate the response surface variable with respect to the input variable for which a
sensitivity is desired.
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In summary, Pratt & Whitney does a thorough and believable job in defining the stress PDF, but
does not address the strength PDF.  The response surface approach can be a good alternative to
Monte Carlo simulation, taking significantly less computer run time.  As a word of caution, the
author notes that response surface methods sometimes lose accuracy when the g-function is
highly nonlinear.

4.10  GENERAL ELECTRIC (GE).

GE’s development of a probabilistic design tool is a part of the Air Force’s drive to meet the
Integrated High Performance Turbine Engine Technology (IHPTET) goal to develop and
demonstrate technologies by the turn of the century that will double the 1985 level of
turbopropulsion capability [77].  To point out the over-conservatism of the present deterministic
design approach, it is noted that certain engine components had been retired at the end of their
deterministically calculated lives, but then reissued if found to be fit for reissue (typically 95% of
turbine engine disks).  Probabilistic analysis of an existing design showed that failure rates were
0.71 in 1000.  With a target failure rate of 1 in 1000, weight savings (18 lb. per disk) could be
achieved while at the same time increasing the calculated PF to this value.

GE’s system involves the direct integration approach, along with fast probability integration (this
term is not defined).  There is discussion of carefully seeding test specimens and model disks
with known imperfections to verify the life and failure mode as predicted by the PDS, but not
enough detail is given to determine its validity.

Another technical paper [78] describes the use of a Taguchi Experimental Matrix to investigate
the effect of [modulus x proportion limit], thermal coefficient of expansion, Poisson’s ratio, and
creep parameter on two response variables.  These four parameters are the major drivers for
mechanical fatigue life.  The stochastic nature of the four effects is what justifies the use of
probabilistic analysis.  Thus, response variable sensitivity can be studied.

4.11  NASA MARSHALL FLIGHT CENTER (MSFC).

The role of NASA Marshall has been primarily to educate the industry on the subject of
probabilistic methods.  As discussed in section 4.5, a MSFC task force was formed in 1991 to
review the JPL method.  This led to an evaluation of the state of the art in probabilistic methods.
Their dissemination of knowledge gained was impressive, as the MSFC task force produced a
well-written 60-page technical report in 1993 [56] containing a thorough review of the JPL
method, as well as an explanation and review of other probabilistic approaches for application in
aerospace structural design.

4.11.1  Probabilistic Methods Documentation.

In 1994, NASA Marshall published a comprehensive 200-page report entitled “Modern
Structural Reliability Methods” [23], which details the approaches involved.  This is an excellent
source for detailed mathematics involved with Monte Carlo, response surface, and limit state
approximation methods.  Much of the information in section 3 of this document was obtained
from this reference.
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Among the recommendations of the MSFC task force was to suggest the goal should be to
supplement current safety factor deterministic approaches with probabilistic methods.  To this
end, several technical papers were written by V. Verderaime [79 through 81], explaining the
First-Order Reliability Method (FORM) and relating it to the safety factor approach.  There was
a twist, however, as the explanation of the First-Order Reliability Method was not the same as it
appeared in other literature.

4.11.2  Proposed First-Order Method.

In the papers by Verderaime, the normal distribution was exclusively used in all parameter
modeling, in conjunction with normal distribution combining techniques (see section 3.7.2.2), to
combine multiple normal distributions into a single normal distribution for both the applied
stress and component strength.

The reasoning behind this is quoted [79]:  “Normal distributions are overwhelmingly observed in
structural data and are justified by the central limit theorem.  The normal distribution assumption
allows the statistical characterization of random variables to be completely and expediently
determined by the mean and standard deviation.  Normal distribution techniques are the best
developed and easiest to learn and apply.  To employ other distributions for small sample sizes is
to prematurely consider unnecessary and burdensome statistical information.  Note that only the
worst-case sides of the two distributions are involved in the failure concept.  Hence, when a
phenomenon is known to be non-normal, the distribution may be split, with the mode (peak
frequency point) representing the mean....  This normalization of skewed distributions amounts
to trading a little eloquence for reduced labor and lead time.”

This method assumes a closed form solution to the problem exists, which for aerospace
structures is usually not the case (e.g., finite element methods are normally used for defining
stress PDF).  As Fox [13] points out in his 1992 paper entitled Statistical Characterization of
Life Drivers for a Probabilistic Design Analysis, “Everything in the world is not normally
distributed....  It should be noted that the normal distribution is perhaps one of the least
conservative distributions that can be used.”  So while all-normal approach may be a good
academic exercise to get engineers up the learning curve, its practicality is highly questionable.

4.11.3  Recent Work at NASA Marshall.

In 1995, a paper [82] was published addressing probabilistic dynamic synthesis.  This is
described as a new methodology for performing analysis of structures composed of substructures
whose dynamic characteristics can be statistically identified.  The method uses the substructure
eigenvalues, eigenvectors, and residual flexibility as random vectors for determining the
response value by combining new probabilistic analysis techniques with the residual flexibility
method of component mode synthesis.  Future work was proposed and a test case performed on a
spring-mass system model.

4.12  THIOKOL CORPORATION.

A probabilistic design approach [83] was developed in 1991 by Thiokol entitled Statistical
Approach for Engineering Reliability (SAFER).  It is believed only one paper was published on
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this, but it appears as though significant effort was put forth.  Probabilistic analysis was applied
to a new solid rocket motor case design.  The analysis ultimately determines the probability that
stress exceeds strength.  More specifically, the hoop stress PDF is referred to as the performance
distribution, while the hoop strength PDF is called the capability distribution.

The general process of SAFER is as follows:

• Identify initial system and component requirements.  These are usually obtained from the
system loading and environmental conditions defined in the mission profile.

• Given the preliminary design, identify the driving failure mode(s).

• Perform structural reliability analysis.  Experimental design methods are used along with
a regression equation to model stress in terms of design variables that are input to
classical laminated plate theory.  Stress and strength equations are generated by randomly
varying design variables over their naturally occurring range using Monte Carlo
simulation.  This is basically the same as the response surface method as explained in
section 3.7.4.  Probability of failure is calculated by combining distributions of stress and
strength via stress-strength integration methods.

In the application, the performance equation (for hoop stress) is a function of eight performance
variables, six of which are described by normal PDFs and two of which are described by uniform
PDFs.  The capability equation (for hoop strength) is a function of three capability variables, two
of which are described by normal PDFs and the other by a uniform PDF.  Monte Carlo
simulation is used to sample from the performance and capability variables, then regression
equations are used to determine the value of hoopstress and hoop strength.  (It is stated that this
regression equation was developed from experimental design methods and classical laminated
plate theory, but no more details are given.)  After numerous MC trials, the mean and standard
deviation of hoop stress and strength are applied to normal distributions and the probability of
failure is calculated.

The validity of this analysis rides on the regression fit for hoop stress; it is unknown if extreme
or moderately extreme values of the performance variables were considered.  It is also unknown
how many sets of performance variable values were used in developing the regression fit.

4.13  NASA LANGLEY.

In a paper published in 1992 [84], two examples are given for the reliability of graphite/epoxy
stiffened panels:

• Effect of bow-type initial imperfection on reliability.  Three PDFs for bow size are
initially considered: maximum extreme value, normal, and minimum extreme value, each
with a mean of zero and standard deviation of 0.02 inch.  Reliability versus fraction of
(deterministic) design load is plotted.  Then assuming quality control procedures would
eliminate panels with bow sizes larger than 0.04 inch, the three PDFs were truncated at
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±0.04 in., and the analysis was repeated.  Results were then compared to the original
analysis.

• Effect of allowable strains on reliability.  Two random variables considered in this
analysis are the percentage of failed plies (PFP) and the coefficient of variation (COV) of
the allowable strains.  Fixing  COV=5%, reliability versus applied load was plotted for
various PFP values.  Then fixing PFP = 20%, reliability versus applied load was plotted
for various COV values.  Although very clearly written, this paper describes an
oversimplified model.  It does, however, convey very simply what probabilistic analysis
is all about.   Also, it addresses the impact of having a good quality control program in
place.  Optimized structural design should include the costs and benefits of various levels
of quality control.  It concludes with the obvious requirement of having an excellent math
model and low variability of important parameters in predicting the failure load for a
structure.

The first studies the effect of an overall bow in the panel (stress) and the second studies the effect
of allowable strain (strength).  Each problem studies the effect of only one random variable at a
time.

Reference 85 contains an interesting approach to comparing deterministic and probabilistic
designs.  A 10-bar truss is evaluated in terms of dynamic performance and is not destroyed if
failure occurs.  Failure is defined as a damping ratio for any of several vibration modes being
below a specified value.  A deterministically optimized design is defined as one in which the
margin against failure is maximized under the constraints that utilized resources do not exceed
allocated resources.  This is not the same as the typical deterministic design approach used for
aircraft structure, where the constraint is margin of safety ≥ 0 at ultimate load, while the
objective function to be minimized is weight, cost, etc.  A probabilistically optimized design is
one in which the probability of failure is minimized under these constraints.

The following issues for reliability-based design are offered:

• Modeling uncertainties associated with the assumptions and simplifications in the
analysis is a key task.

• A tail sensitivity problem exists, i.e., determining the shape of the stress PDF’s right tail
and the strength PDF’s left tail.

• The calculated probability of failure, as a result of the aforementioned issues, should be
used only as a subjective measure of safety, making important the question of whether
the resulting designs are still better than their deterministic counterparts.

The extended interior penalty function technique incorporated in the code NEWSUMT-A was
used for performing optimization in both cases.  The end result was that the probabilistic
optimum was considerably safer than the deterministic optimum.  The reasons given for this
were (1) the probabilistic approach accounted for the uncertainties in a rational way, and (2) the
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probabilistic approach accounted for the sensitivity of the cost and performance of the system
with respect to the uncertainties.

4.14  GRUMMAN AEROSPACE.

As part of a contract with NASA Lewis under the Advanced Composites Technology (ACT)
program, Grumman was involved in applying and assessing the Integrated Probabilistic
Assessment of Composite Structures (IPACS) computer program, developed by NYMA Inc.
under contract with NASA Lewis and described in section 4.3.1.  Since IPACS was in an
evolving state at the time, many suggestions were documented [86].  A comparison was made
between IPACS’ predicted material response distributions and Grumman’s test results for the
unnotched specimens.  Specifically, IPACS was used to predict tensile modulus and strength
distributions for longitudinally loaded test specimens tested at room temperature.

Strength predictions were obtained from two failure criteria, one based on Chamis’ combined
stress criterion and the other on the maximum uniaxial stress criterion.  Analyses were performed
using three NESSUS analysis options:  (1) FORM (a limit state approximation method),
(2) SORM, and (3) Monte Carlo simulation.

Good correlation was found in a comparison of predicted and measured longitudinal modulus
distributions for the unnotched unidirectional, cross-ply, and quasi-isotropic laminates.
Correlation of strength distributions for the unnotched laminates were judged good for the
unidirectional laminate and fair for the cross-ply laminate.  Strength correlation for the quasi-
isotropic laminate was not good because IPACS (at the time) did not have a progressive failure
capability.  For the cross-ply and quasi-isotropic laminates, the linear response surface (FORM
analysis) was accurate for the prediction of modulus distributions but inaccurate for the
prediction of tension strength distributions because of nonlinearity with the random variables.

4.15  THE CENTRAL AERO-HYDRODYNAMIC INSTITUTE (TsAGI).

The Central Aero-Hydrodynamic Institute (TsAGI), from the Russian Federation, developed a
methodology for probabilistic analysis of composite aircraft structure named Probabilistic
Design of Damage Tolerant Composite Aircraft Structures (ProDeCompoS) [87].  It includes
databases and a library of application programs.  The analysis uses a large amount of
information:

• Mechanical characteristics of composite materials
• Manufacturing processes
• Results of nondestructive inspection during manufacture, testing, and service.
• Data from experimental investigations
 
4.15.1  General Input Requirements to the Software.

The following inputs are depicted in figure 4-11:

• Types of manufacturing flaws and their statistical distribution with respect to dimensions
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• Types of in-service damage and their statistical distribution with respect to dimensions

• Dimensions of damages which occur after typical mechanical impacts

• Estimates of effects of manufacturing flaws and damages on the residual strength and
endurance

• Parameters of statistical distribution functions for the residual strength and endurance

• Design conditions, values of applied loads, environmental factors, and their statistical
characteristics

• Inspection and repair schedules

• Failure probability estimation methods

FIGURE 4-11.  TsAGI PROBABILISTIC METHODOLOGY

4.15.2  ProDeCompoS Methodology.

The ProDeCompoS methodology is formulated as flight-by-flight numerical simulation of the
combined stress-strain state of the structure, taking into account diverse random sources of loads.
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In each time instant (interval), the stress state is compared to the strength state, which is
simulated depending on the initial strength state and its random variation during operation.  The
structural loads should be modeled in a probabilistic manner to allow determination of the
maximum expected value of load for any time of operation.  The comparison of stress level vs.
strength level determines local structural failure.  When N load histories and residual strength
histories are simulated and M failures are observed, the probability of failure is evaluated as
β = M/N.  The total structural failure probability for time “t” from the beginning of operation is
calculated by

β β= − −
=

∏1 1
1

( )i
i

N

where βi is the failure probability of a piece of structure for the ith loading case.  The time chosen
is usually the service life, and therefore it gives the probability that component failure will occur
during the aircraft lifetime.  Attempting to back out a single-flight probability of failure (which is
done in application examples) from this is not intuitive.

This method calculates probability of failure differently for the scenario of damaged vs.
undamaged structure.  That is, if during the simulation of an aircraft lifetime no damage occurs
to the structure, the component strength is not degraded and the probability of failure is
calculated from the well-known formula

β =
∞

∫ f x F dxl p x
i i

max ( )( )
0

where Fpi(x) is the cumulative distribution function for the load-bearing capacity of the structural
location for the ith design case, and flmaxi is the probability density function of maximum load for
time t.  The expected number of defects during the aircraft’s service life is modeled via Poisson
distribution.  If the expected number of damages exceeds one, Monte Carlo simulation is used to
determine probability of failure for that location.  If the expected number of damages during the
service life is less than one, an approximate composite method is applied, which is an equation
for conditional probability of failure.  Applications include Lear Fan 2100 and SU-29 wing
analyses.

4.16  NANCHANG AIRCRAFT MANUFACTURING GROUP.

One technical paper was found from this company dealing with the development of a new
Sequential Response Surface Method together with Monte Carlo Importance Sampling.  This
technique is based on Bucher’s g-function approximation method [88] together with FEM
methods to calculate response parameters and approximation techniques of structural
optimization.  The goal is to develop a response surface.  This method was tested using a 3-bar
truss structure and a multiweb wing structure model.  The sequential response surface method
was shown to be efficient and accurate.  Results of both cases were compared to the probabilistic
analyses obtained using a probabilistic finite element method (program named PFEM1no
reference given) and Monte Carlo simulation.  More development efforts were identified and
recommended.
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4.17  ALPHA STAR CORPORATION.

Under sponsorship from NASA, Alpha STAR developed the computational structural and
material analysis and design tool GENOA [89].  This software is dedicated to parallel and high-
speed analysis to perform probabilistic evaluation of high-temperature composite response of
aerospace systems.  The technique is specifically designed to exploit the availability of
processors to perform computationally intense probabilistic analysis to assess uncertainties in
structural analysis and composite micromechanics.

The objectives achieved were (1) utilization of the power of parallel processing and static and
dynamic balancing optimization to make the complex simulation of structure, material, and
processing of high temperature composites affordable and (2) computational integration of
probabilistic mathematics, structural mechanics, and parallel computing.
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5.  NORTHROP GRUMMAN METHODOLOGY THEORY.

This section gives a detailed explanation of one industry method. The Northrop Grumman
Commercial Aircraft Division (NGCAD) methodology uses numerical integration (discussed in
section 3.7.2) along with Monte Carlo simulation (section 3.7.3) to determine probability of
failure.

Section 5.1 gives a historical overview of development of the NGCAD probabilistic design
methodology.  A high-level overview of the procedure in flow chart form and description of the
main components is given in section 5.2.  Section 5.3 shows a detailed flowchart of the process;
each subcomponent of the procedure is then described in detail.  Section 5.4 shows additional
probability calculations, and section 5.5 describes the program output.  An example problem
illustrating the method is given in section 5.6.

5.1  HISTORICAL OVERVIEW.

Development of the NGCAD probabilistic design methodology for composites began in 1988 as
a study to determine the degree of conservatism in composite design allowables.  It was later
expanded to perform a risk assessment of the USAF B-2 bomber.  In 1989, the risk analysis was
refined and development of a probabilistic design process was funded as Independent Research
and Development.  The methodology was subsequently used to analyze structural risk
(probability of structural failure) on several different aircraft wings.  Up through 1997, the
program was funded under contract from the FAA.  A PC-based program has been developed
and is available from the FAA.

5.2  NGCAD PROBABILISTIC DESIGN METHODOLOGY OVERVIEW.

The Northrop Grumman probabilistic design methodology employs numerical integration with
Monte Carlo simulation to determine probability of failure of a structural component and/or
system of structural components.  The approach is to perform detailed probabilistic analyses at
representative locations yielding individual probabilities of failure which are then statistically
combined to produce a system probability of failure.

The maximum operating stress (σmax) per flight probability density function (PDF) is determined
from the maximum vertical load factor (nzmax) per flight PDF (a program input) and the linear
relationship between nz and stress (also based upon program inputs).  The baseline material
strength PDF is a program input as well.  The program accommodates normal, lognormal, and
Weibull PDF types.  The equations for these PDF types are shown and explained in section 3.3.

The equation for probability of failure is PF = ( ) ( )f s G s ds
fΩ
∫ , where f(s) is the σmax per flight

PDF, G(s) is the material strength cumulative distribution function (CDF), and Ω f is the domain

of f(s).  (The CDF is known for any of three PDF types and contains the same parameters.)  The
sole purpose of Monte Carlo simulation is to position the σmax per flight and material strength
PDFs relative to each other accounting for gust, environment, and defects.  In each Monte Carlo
trial, the PDFs are modified to account for these effects through use of shift values and scale
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factors.  Shifting the PDF means incrementing its domain values by a constant, C1, thus the
cumulative probability once associated with s becomes associated with s+C1.  Scaling involves
multiplying the domain values by a scalar, C2 > 0, thus the cumulative probability once
associated with s becomes associated with sC2.  Note that shifting preserves the standard
deviation of the distribution, while scaling preserves the coefficient of variation (ratio of standard
deviation to mean).

Shifting and scaling are accomplished by changing the parameters of the PDF (described in
table 3-1), as described in table 5-1.  Once the PDFs are positioned by various shift values and
scale factors, a single numerical integration is performed to determine the PF for that Monte
Carlo trial.  Results from numerous Monte Carlo trials are averaged arithmetically to determine
the component PF.

TABLE 5-1.  PROBABILITY DISTRIBUTION TRANSFORMATIONS

Distribution Parameters Transformation New Parameters
Normal µ , σ Shift by C1 µ  + C1 , σ
Lognormal µ ,σ , t0 Shift by C1 µ ,σ , t0 + C1  
Weibull θ , β , t0 Shift by C1 θ , β , t0 + C1

Normal µ , σ Scale by C2 0> C2 µ , C2 σ
Lognormal µ ,σ , t0

Scale by C2 0> µ +ln C2 ,σ , C2 t0

Weibull θ , β , t0 Scale by C2 0>           C2 θ , β , C2 t0

Figure 5-1 gives a high-level depiction of the methodology with the design process, material
production, manufacturing process, and operations comprising the model.  For each Monte Carlo
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trial, the result of the design process is to yield a maximum operating stress distribution, while
the other three components work together to yield a material strength distribution.  As explained
above, numerical integration of the product of the maximum operating stress PDF and the
material strength CDF determines PF for each Monte Carlo trial.  PF is determined by averaging
the results from Monte Carlo trials.

5.2.1  Design Process.

The NGCAD probabilistic design model is directly related to the structural analysis of the
component, performed external to the probabilistic model.  Applied loads, part geometry, and
material properties are input to a finite element model to yield nodal deflections and internal
loads.  From this, failure criteria are applied and margins of safety generated from deterministic
composite structural analysis methods.  Normally, this procedure is repeated until the structure is
optimized within the usual design constraints.

Margins of safety are a key input to the probabilistic analysis.  They are used to determine the
design limit stress level at each analysis location.  Predicted maximum load distributions are
established from load factor nZ exceedance data; this defines the shape of the maximum
operating stress PDF through scaling of the Maximum nZ per flight PDF.  Knowing the nZ level
corresponding to design limit load, a scale factor (nZ → stress) is used to convert the maximum
nZ per flight PDF to engineering units consistent with those of the material strength PDF.

5.2.2  Material Production.

Material strength distributions are established from mechanical property tests performed on the
specific material(s) used in the component(s).  These are normally available from material
qualification tasks performed early in the development program.  Often, valuable data are also
available from material acceptance testing as the program matures.

A key assumption in the probabilistic model is that component failure is directly related to a
basic mechanical property for which ample data have been developed to accurately describe its
statistical distribution.  This is particularly important in the tails of the distributions since the
structural failure probability is typically very small (< 10-8).

5.2.3  Manufacturing Process and Operations.

This portion of the model simulates activity encountered during production of parts that affects
material strength.  This is defined as manufacturing defects.  A manufacturing defect has some
quantifiable impact on basic material strength.  The nature, severity, and frequency of defects
must be investigated and defined.  This is somewhat arbitrary because it is the purpose of the
quality control process to identify and screen out defects.  That is, it is the defect that escapes
detection that is important to structural risk.

In operational use, the part geometry, location on the aircraft, failure data from similar aircraft,
and the predicted environment are analyzed to determine the expected frequency of operational
damage.  The source of this damage is low energy impact, either from foreign objects (runway
debris, hail) or maintenance.  Damage size and severity data are analyzed and a single material
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strength scale factor representing the distribution of strength reductions is chosen.  The material
strength is reduced according to the expected frequency, average effect on strength, and location
on aircraft.

5.3  DETAILED DESCRIPTION OF NGCAD METHODOLOGY.

For a given location subject to a potential failure mode, the Monte Carlo simulation does the
following:

• Adjusts stress and strength PDFs due to randomly selected effects
• Calculates probability of failure via Romberg integration
• Calculates an average probability of failure from all trials

Figure 5-2 shows a detailed flowchart of the NGCAD methodology, with each significant
flowchart element assigned a number.  Each box will be discussed in this section.  Note that
figure 5-1 is a high-level depiction of this flowchart.

Box 1Load Requirements.  The design service life and design usage are based on usage
requirements,  typically stipulated in terms of:

• Total flight hours

• Total number of flights

• Total number and type of landings

• Total service years

• Mission profiles (divided into segments [taxi, ascent, cruise, etc.] with associated
duration, altitude, speed and weight)

• Mission mix or number of flights of each mission

Box 2Exceedance Data.  The load spectrum for each mission segment is characterized by a
table of occurrences of a load parameter.  The normal load factor at the aircraft center of gravity,
nZ, is commonly used.  A table of occurrences is made by summing the occurrences per mission
segment.  These are plotted to form an exceedance graph.  An example for positive maneuver
loads is shown in figure 5-3(a).  This shows the number of times in which specified values are
exceeded during a specific time period.  The time period is picked such that if measurements
were taken again during an equal number of flight hours, the exceedance spectrum would
theoretically be the same.  Once the service life summary, mission profiles, and load factor
spectra are defined, the load spectrum can be generated at specific locations on the aircraft using
transfer functions based on load paths, material properties, and geometry.
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Box 3Max nZ per Flight PDF Parameters.  Once the load factor spectrum is defined, it is
converted to a probability distribution function (PDF) of the maximum nZ per flight.  The
Poisson distribution is used for this.  This PDF represents the distribution of the probability of
achieving maximum load factor levels during a single flight and is shown in figure 5-3(b).  One
procedure to obtain this PDF from the exceedance curve (figure 5-3(a)) is illustrated by the
following example.  The Microsoft EXCEL spreadsheet analysis for the Lear Fan 2100 aircraft is
shown in table 5-2.

Columns A and B are a table of exceedances provided as input data.  Column C is the CDF
obtained to calculate the probability of a given load level being the maximum during a single
flight by using the Poisson distribution.  That is, the parameter λ is defined as the expected
number of times the load factor nZi will be exceeded during a single flight.

TABLE 5-2.  LEAR FAN 2100 CURVE FITTING OPTIMIZATION

A B C D E F G
No. of Exceedances Poisson Optimized No. of Exceedances Error

nZ per 1000 Flights CDF CDF per 1000 Flights Term PDF
1.00 Infinity 0.00000 0 Infinity 0
1.15 5626.69 0.00360 0.06087 2799.04 0.00654 1.49622
1.25 3515.89 0.02972 0.27563 1288.69 0.01511 2.48931
1.35 2126.35 0.11927 0.51235 668.74 0.02279 2.12247
1.45 1237.13 0.29022 0.69117 369.37 0.02882 1.45814
1.55 696.11 0.49852 0.80867 212.36 0.03290 0.92312
1.65 379.17 0.68443 0.88184 125.75 0.03455 0.56712
1.75 199.23 0.81936 0.92659 76.25 0.03291 0.34593
1.85 88.90 0.91494 0.95391 47.19 0.01992 0.21179
1.95 38.38 0.96235 0.97070 29.74 0.00489 0.13084
2.05 18.94 0.98124 0.98113 19.05 0.00000 0.08177
2.15 11.16 0.98890 0.98768 12.39 0.00188 0.05175
2.25 7.27 0.99276 0.99186 8.18 0.00350 0.03318
2.35 4.70 0.99531 0.99455 5.47 0.00950 0.02155
2.45 3.39 0.99662 0.99631 3.70 0.00511 0.01417
2.55 2.39 0.99761 0.99747 2.53 0.00444 0.00943
2.65 1.63 0.99837 0.99825 1.75 0.02231 0.00635
2.75 1.22 0.99878 0.99877 1.23 0.00067 0.00432
2.85 0.87 0.99913 0.99913 0.87 0.00108 0.00297
2.95 0.65 0.99935 0.99938 0.62 0.01445 0.00206

Error Sum 0.26139
Parameters µ = -1.0664

σ =  0.5368

Therefore the values in column B are divided by 1000 to get the Poisson expectation in terms of
per flight.  Mathematically, Column C value = e (-0.001 × column B value).
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Based on the discussion of the Poisson distribution in section 3.6.3, for each load level i, e-λi thus
represents the probability that nZi will not be exceeded, hence the probability that the maximum
nZ lies between 1.0 g and nZi during the flight.  Therefore e-λi is the value of nZmax per flight
cumulative distribution function (CDF) at nZi, or equivalently, the area under the nZmax per flight
PDF between 1.0 g and nZi.  This process is repeated for as many nZi values as necessary to
adequately define the CDF.

To choose the best distributional fit of the CDF, the distribution parameters are optimized via
built-in Microsoft EXCEL (Solver) routines, minimizing the objective function denoted Error
Term in column F. (Note in the lognormal case shown, the third parameter is nZ = 1, so only µ
and σ are given).  This error term is defined as

Column F value = [LN(column B) - LN(column E)]/LN(column B),

where column E values are the fitted exceedances per 1000 flight values generated by using the
optimized lognormal parameters shown at the top of the figure, and are calculated by

Column E value = 1000 × LN(Column D value)

Column D values are generated by the equation for the CDF of a lognormal distribution with
optimized parameters mean and sigma.  The EXCEL spreadsheet has an internal function named
LOGNORMDIST to generate the CDF in column D, given parameters µ and σ.  If the fit were
perfect, the values of column D would match exactly those in column C and the error sum, being
minimized, would be zero.

In this example, the optimized parameters were µ = -1.0664 and σ = 0.5368, while as mentioned
above, the third parameter was set to 1.0.  The resulting PDF, using these three parameters, is
graphically shown in figure 5-3(b).  This goodness-of-fit test is performed with normal,
lognormal, and Weibull PDFs, the one with the least error sum is used.  The third parameter of
the Weibull and lognormal distributions is nZ = 1, i.e., the maximum load factor experienced
during any time interval will always exceed nZ = 1 (level flight).

Box 4Gust Loading.  Gust loading is implemented as an event that occurs a portion of the
flight time.  From the input of probability of a gust occurring (e.g., 10%), a uniform distribution
is defined to delineate between a gust and no-gust situation.  Similarly, a probability level is
given for the percentage of up vs. down gust, represented by another uniform distribution.  That
is, given that a gust occurs, there will be a percentage breakdown defined between up and down
gusts.

To illustrate, suppose the probability of a gust occurring is 10%, and the probability of a down
gust (given a gust has occurred) is 20%.  In the Monte Carlo simulation, a random draw is made
from a uniform [0,1] distribution:  if the value lies between 0 and 0.1, the effect of gust will be
implemented in the Monte Carlo trial.  Then, another draw is made (uniform [0,1] distribution) to
decide whether it is an up or down gust.  Should that value lie between 0 and 0.2, the event will
be modeled as a down gust.

Box 5Distribution Shift Due to Gust.  A random draw from a normal, Weibull, lognormal, or
uniform gust load PDF is used to model the effect of gust.  The effect of the gust load is to shift
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the load factor distribution either in a positive or negative direction by an amount equal to the
random draw.

In the NGCAD simulation, gust occurrence is superimposed on the maximum nz during the
flight.  It would be unrealistic and too conservative to superimpose severe gust loads (up to 2 g’s
for the Lear Fan) on the maximum nz during the flight.  Instead, the gust magnitude PDF is
defined as a uniform distribution from 0.1 g to 0.3 g, since the mean of the gust spectrum is
about ~0.2 g and three is only a small deviation about this mean (0.1 g).  Certainly, the user
could input a nzmax per flight PDF which corresponds to the gust exceedance spectrum, but to add
this to the maneuver nzmax per flight PDF would be unrealistically severe.

Box 6Load Truncation.  This box represents an option to truncate the load factor distribution.
If unbounded, the load factor extends beyond that which is physically possible for the aircraft to
achieve.  If selected, truncation should be based upon performance attributes of the aircraft
coupled with engineering judgment.  Assessment of the Lear Fan 2100 wing was performed with
the maximum load factor distribution truncated at ultimate load, which corresponded to
approximately 5 g’s at the aircraft center of gravity (c.g.).  It may be of interest to the user to
generate PF versus truncation level.

Box 6AConversion to Stress.  This step represents the conversion from aircraft performance
parameter to stress at the point under consideration.  It is assumed to be a linear scale factor
developed from deterministic structural analysis.

Box 7Material Allowables.  Development of material allowables is an important component of
the NGCAD probabilistic methodology.  A number of issues must be addressed when generating
allowables, including number of batches and specimens per batch.  In addition, because of the
anisotropic characteristic of composites, difficulty in testing (in particular, compression), and the
presence of more manufacturing process variables, there is often significant batch-to-batch
variation.  Material data developed at the coupon level often require adjustments, such as finite
width correction.

Boxes 8 and 9Design Process and Finite Element Model (FEM).  The finite element model
used to determine the response of the structure (deflections and internal loads) to externally
applied loads requires (1) design geometry to establish a grid of nodal elements and primary load
paths, (2) constraints to specify boundary conditions and symmetry, (3) externally applied loads
as input to the model, and (4) material properties and thickness to define structural flexibility.

The FEM step is actually the result of detailed structural analyses which normally use the finite
element models for primary inputs.  Structural analysis identifies the predicted failure modes and
quantifies the margin between applied loads and stresses and allowable loads and stresses.  The
margin of safety from this step establishes the relationship between stress and aircraft
performance parameters such as nZ.  The FEM is also useful to determine the state of stress
throughout the component, thus guiding the selection of critical points for probabilistic analysis.

Box 10Deterministic Baseline Parameters.  The FEM is iterated until optimized (outside the
probabilistic program), given design and manufacturing constraints.  The resulting thickness and
margin of safety (defined as [Allowable Strength/Ultimate Stress-1]) for the critical failure
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modes at each node are designated as baseline thickness and baseline margin of safety for the
subsequent probabilistic analysis.

Box 11Design Limit Stress (DLS) Calculation.  From the material allowable and margin of
safety at each probabilistic analysis point (both inputs to the program), the design limit stress
(DLS) is established.  This is derived from the formula for margin of safety described above
(Box 10), along with the definition of ultimate stress = 1.5 times the design limit stress.  This is a
very important part of the probabilistic analysis, as the DLS value is used in conjunction with the
nZ value corresponding to the design limit condition.  For example, the Lear Fan design limit
load corresponds to 3.5 g.

The maximum nZ per flight PDF is thus converted to maximum stress per flight PDF (σmax) by
way of a scale factor (denoted DLS on the flowchart), calculated as

nZ max → σmax scale factor = [DLS]/[nZ level associated with DLS]

This effectively changes the units on the horizontal axis without changing the form of the PDF.
The parameters of the original load factor PDF are thus modified to reflect the linear
correspondence between nZ and stress, as well as ensure the area under the PDF remains at 1.

Box 12Thermal Stress.  A provision is made to account for thermal stress at the component
location.  Calculation of thermal stress levels and their effect is done outside the program.
During Monte Carlo simulation, a single temperature is randomly selected from the flight
temperature profile (Box 25) distribution.  If this temperature causes a thermal stress in addition
to mechanical stress, it is represented by a factor (denoted TS on the flowchart) which adjusts
(scales) the σmax per flight distribution.  A table of temperature vs. thermal stress factor must be
input to the program.

Box 13Operating Stress PDF.  The σmax per flight PDF is fully defined at this point, and is in
the same units as the material strength PDF to enable integration.  The distribution thus starts out
as an nZmax per flight PDF and is translated should a gust condition be encountered, truncated
should the nZmax limit option be chosen, and scaled to the same units as the material strength
PDF.

Box 14Material Production.  For each distinct failure mode, sufficient test data should be
obtained to define pertinent material property statistical distributions.  MIL-HDBK-17 prescribes
that 30 data points is a sufficient sample size to determine a stable mean, standard deviation, and
a B-basis material allowable.  Obviously, the larger the sample size, the greater the certainty in
the statistical distribution assigned to the material property.  This is discussed further in section 3
of this report.

Once the data has been obtained, it is screened for outliers and a goodness-of-fit test performed
to find which distribution is most appropriate.  The test is called the Anderson-Darling goodness-
of-fit test and is recommended by MIL-HDBK-17 for use in generating design allowables.
Spreadsheet optimization routines, such as those in Microsoft EXCEL, can also be used to
evaluate goodness-of-fit and distribution parameters.
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One difficulty in using a 3-parameter lognormal or Weibull distribution is in defining the third
parameter, which is where the distribution begins.  That is, there is zero probability that the
strength, for the particular failure mode, will ever fall below that value.  This is usually a difficult
decision, thus the caution.  Of course, one conservative option involves setting the third
parameter (the starting point) to zero; this is what is recommended in MIL-HDBK-17.

Box 15Spatial Distribution of Material Strength.  In-plane shear, tension, and compression
failure modes are modeled by sample data from coupon testing.  There is no coupon test directly
applicable to buckling strength, but since the equation for flat plate buckling strength (used to
approximate the panel) contains a linear expression for the compression modulus, Ec, test data
from these coupon level tests are used.  Because critical buckling strength is also proportional to
the square of part thickness, the factor t2 is also used, so that buckling strength is modeled by an
expression Et2.  Thus, the buckling strength is proportional to the compression modulus E and to
the square of the thickness Fcr ∼ Ec t2.  This distribution can then be scaled and shifted as
necessary to account for manufacturing and operational defects, as well as temperature and
moisture effects.

Box 16Bearing Bypass Adjustment.  If there are analysis locations which have significant
bearing stress and there is sufficient test data to calculate a material strength reduction factor, the
material strength PDF can be adjusted (scaled) accordingly.  As an example, a probabilistic
analysis was performed on a wing structure where there was a 35% tension strength reduction at
a fastener hole location with significant bearing stress.

The program assumes the effect will be predetermined (i.e., done outside the program) from test
data of failure stress vs. bearing stress.  That is, a series of locations defined by x and y
coordinates are entered and, given a bearing stress at a particular location, the knockdown (scale)
factor is determined by interpolation between the input x and y coordinates.  This scale factor is
denoted BBA in the flowchart.

Boxes 17 and 18Manufacturing Defect Simulation.  Types of manufacturing defects must be
chosen which affect the material strength for the failure modes being analyzed.  Occurrence rates
for each type of manufacturing defect are generated outside the program and used with Monte
Carlo simulation to account for the presence of undetected manufacturing defects.  Defect
size/severity data are analyzed and a single material strength scale factor representing the
distribution of strength reductions is chosen.  The material strength is adjusted (reduced)
according to the expected frequency, average effect on strength, and location on the aircraft.
These rates, based on the manufacturer’s data, are input to the program, per defect type, as the
expected number of defects per square foot of material.

Coupled with location area, probabilities of having a defect can be determined via use of the
Poisson distribution.  That is, using Poisson theory, the probability that one or more defects will
occur is the quantity one minus the probability of having no defects.  Mathematically,

P(1 or more defects) = 1 - P(no defects)

where P(no defects) = e(- defect rate × location area)
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For example, if the manufacturing defect rate for waviness is input as 0.02 defects per square
foot, and the area of the location of interest is 2 ft2, then the probability of having a defect
(calculated inside program) would be P(1 or more defects) = 1 - e-0.02 × 2 = 0.0392.  During Monte
Carlo simulation, numbers are generated from zero to one.  A number  between zero and 0.0392
would indicate a waviness defect at that location, and the material strength would be reduced
(scaled) in accordance with table 5-1.

Boxes 19 and 20Operational Damage Simulation.  Occurrence rates for each type of
operational damage are generated outside the program and used with Monte Carlo simulation to
account for operational damage.  These rates, usually based on data from similar aircraft, should
be researched thoroughly, as operational damages typically lead to severe strength reductions
and can produce relatively high probabilities of failure.  Damage size and severity data is
analyzed and a single material strength scale factor representing the distribution of strength
reductions is chosen.  The material strength is reduced according to the expected frequency,
average effect on strength, and location on the aircraft.  These rates are input, per defect type, as
the expected number of defects per square foot of material per flight hour of operation.  From
Phase I of the Northrop Grumman Probabilistic Design project, funded by the FAA, the data
shown in table 5-3 was obtained from two major commercial aircraft carriers.  Portions of these
data were used to develop program inputs for operational damage rates.

TABLE 5-3.  OPERATIONAL DAMAGE; SOURCE:  TWO U.S. AIRLINES (1993)

Carrier A Carrier B Total
No. Flight Hours 2,005,896 1,691,775 3,697,671
No. Maintenance Induced Damages 585 491 1076
No. Lightning Strikes 60 51 111
No. Bird Strikes 4 3 7
No. Hail Storms 5 1 6

These data were used to generate rates in terms of number of occurrences per FH.  Then,
approximate dimensions (surface areas that would see the different types of damage) of a typical
aircraft flown by these carriers were used to develop rates in terms of number of occurrences per
FH per ft2.  With these rates, along with location area and analysis time (e.g., 15,000 FH),
probabilities of having damage can be determined via use of the Poisson distribution, similar to
the handling of manufacturing defects.  The probability that one or more defects will occur is the
quantity one minus the probability of having no defects.  Mathematically,

P(1 or more defects) = 1 - P(no defects)

where P(no defects)  =  e(- defect rate × location area × analysis time)

For example, if the operational defect rate for hail damage is input as 1x10-8 defects per square
foot per flight hour, the location area is 2 ft2, and the analysis time is 20,000 FH, then the
probability of having a defect (calculated inside the program) would be

P(1 or more defects) = 1.0 - e-1E-8 ×  2 × 20,000 = 0.0004
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During Monte Carlo simulation, a number chosen between zero and 0.0004 would indicate hail
damage at that location, and the material strength would be reduced (scaled) in accordance with
table 5-1.

Box 21Material Strength Reduction Factors.  It is possible that two types of manufacturing
defects can occur at a location within the same Monte Carlo trial; logic is written into the
program to choose the more severe reduction of the various defect types.  Similar program logic
is written for operational damage.  It is further possible that a manufacturing defect as well as
operational damage can occur at a location within the same Monte Carlo trial.  Rather than
superimpose the manufacturing and operational reduction factors, the program will choose the
defect with the most severe strength reduction. The strength reduction scale factor, representing
manufacturing defects and operational damage, is denoted MFGOP in the flowchart.

The program output lists, for each major structural component (consisting of several locations),
the number of each type of manufacturing and operations damage defect that was modeled.
Also listed via a table is the numbers of times each defect type was overridden by a more severe
defect type, as described above.  This enables verification that the program is modeling defects
accurately.

Box 22Aircraft Age.  This probabilistic analysis can be run for any aircraft age, from zero
flight hours to an analysis at the end of its life to find the single-flight probability of failure.  The
difference between a single-flight probability of failure for a new aircraft versus an aircraft at the
end of its life is due to moisture absorption (into resin) and operational damage found to be a
function of aircraft age.  There is currently no provision to automatically run the analysis at
different analysis times (aircraft ages), therefore the analysis time must be input and program
rerun for each unique age.

The basic material strength is assumed to be independent of aircraft age; fatigue is not a failure
mode considered.  There has been much research into mathematical modeling of delamination
growth as a function of age, similar to the modeling of fatigue in metals.  While laboratory
testing may validate certain growth models, actual aircraft historical usage has not (to date)
borne out the steady cycle-by-cycle growth of delaminations to some critical size whereupon
component failure results.

Box 23Operating Environment.  It is well known that organic matrix composites are
susceptible to temperature and moisture, causing significant degradation of some of their
mechanical properties.  For carbon/epoxy, the moisture absorbed is contained in the resin matrix.
External surfaces in direct contact with the environment absorb or desorb moisture almost
immediately, while moisture flow into or out of the laminate interior occurs relatively slowly.
The moisture diffusion rate is many orders of magnitude slower than the heat flow associated
with thermal diffusion, but even relatively thick structure can become saturated within a few
years.

The rate of moisture absorption is controlled by the material property called moisture diffusivity,
which is primarily a function of temperature.  Figure 5-4 illustrates this temperature dependence,
showing a family of moisture gain curves obtained at several different temperatures.  The percent
moisture content in a given laminate is a function of relative humidity to which it is exposed.
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The maximum moisture content is a little over 1%; this is typical for most organic matrix
composites, given enough time to reach moisture equilibrium from realistic service exposure.
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Degradation of mechanical properties is primarily due to the reduction of matrix mechanical
properties and interface bonding strength between fibers and matrix.  The carbon fibers
themselves are insensitive to hygrothermal effects.  Moisture in the organic matrix lowers the
temperature at which the matrix starts to soften.  Therefore matrix-dominated mechanical
properties (compression) tend to significantly decrease with increasing moisture content and
increasing temperature (figure 5-5).
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Box 24Flight Temperature Distribution.  Altitudes and times of individual segments of each
mission can be utilized, when available, to obtain the time distribution of structural temperature
in flight.  Then either a discrete or continuous distribution can be used to represent the expected
flight temperature frequency during a single flight.  Of course, a continuous distribution should
be truncated on both ends, but this is not a limitation.

By creating a probability distribution from the mission profile data, temperature is modeled
independently of the time into the mission.  That is, temperature is randomly chosen from the
probability distribution within each Monte Carlo trial; these trials do not conform to any time
sequence of any particular mission.  The randomly chosen temperature is that which exists
during the maximum maneuver, nZmax.  The temperature distribution is based on pooled mission
profile time-at-altitude data, coupled with assigning average temperature-at-altitude values, thus
all possible temperatures are accounted for.  It is assumed that nZmax could occur at any of these
temperatures, so Monte Carlo simulation considers them all and calculates an average probability
of failure over all values of temperature.

The temperature chosen in each simulation is input to calculate thermal stress changes (described
in Box 12) and to adjust material strength for hygrothermal laminate effects.

Box 25Storage Environment.  Laminate moisture absorption will occur throughout the
aircraft’s life cycle.  If the laminate is exposed to the sun or other heat sources, there can be a
significant increase in structural temperature.  A relationship between ambient temperature and
structural surface temperature is used to determine the structure temperature profile.  It is
therefore desirable to obtain ambient temperature and relative humidity profiles (hourly data for
a year period is preferable) for the primary base location, calculate the structural temperature
profile, and compute the percent moisture absorbed as a function of time.  This ambient
temperature and relative humidity data can be obtained from Surface Airways Hourly data [91],
available from the U.S. Department of Commerce, via the National Climatic Data Center.

A computer program was used incorporating the mass diffusion theory following Fick’s Law,
which is a moisture analog to thermal diffusion.  The program uses the Surface Airways Hourly
data as input, as well as laminate thickness and boundary conditions.  This program is not a part
of the Probabilistic Design computer program.

Box 26Moisture Absorption Model Output.  The result of the moisture absorption program
runs is to generate a family of moisture absorption vs. time curves, each corresponding to a
laminate thickness.  Obviously, the lower curves represent thicker laminates.   The probabilistic
design program is run at a certain time, in years, representing aircraft age.  As seen in the
flowchart, the laminate thickness, for this given age, will have an average percent moisture
absorbed value.  This number is actually percent weight gain of the laminate.  Should the actual
part thickness lie between two thickness curves, linear interpolation is performed to establish the
percent moisture absorbed.

Box 27Strength Reduction due to Environment.  The temperature chosen from Monte Carlo
sampling of the flight temperature distribution identifies the point along the abscissa of the
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material strength scalar vs. temperature graph.  A triflex distribution is defined, anchored at the
dry (set to 0%, or 0.0) and wet (set to 100%, or 1.0) curves.

The triflex distribution, developed at Northrop Grumman, is a modified triangular distribution,
defined by four parameters:  (1) minimum value (0 representing the dry curve), (2) maximum
value (1.0 representing the wet curve), (3) the mode (highest point), and (4) shape factor.  The
percent moisture absorbed, given aircraft age and laminate thickness, is defined (done
automatically) to be the mode of this triflex distribution.  The shape factor is defined by the user
to adjust the shape (steep, shallow) around the mode;  its role is similar to how a beta distribution
uses a shape parameter to adjust the variance.

Monte Carlo simulation is used to randomly pick from this distribution; the value chosen
represents the actual moisture content, which determines the material strength scalar.  This value
is therefore a function of base temperature and relative humidity, flight temperature, laminate
thickness, and aircraft age. This process accounts for the hygrothermal effects on the laminate.
Denoted MSR in the flowchart, it scales the material strength distribution in accordance with
table 5-1.

Box 28Adjusted Material Strength Distribution.  The material strength distributions originate
from material coupon test data and are subsequently scaled by the (1) bearing by-pass factor
(2) temperature or moisture factor, and (3) manufacturing or operations factor.  The
mathematical procedures of scaling the distributions are shown in table 5-1.

Box 29Component Failure Probability (per Monte Carlo Trial).  The computer program
presently has the capability to integrate combinations of normal, lognormal, and Weibull
probability distributions.  The integrations are carried out using Romberg integration techniques
and are described in reference 90.  For each unique combination of stress and strength
distribution, the double integration formula for probability of failure is transformed to a single
integral.

Truncation of distributions is accounted for in the integration limits.  That is, truncating the
applied stress distribution at a particular load level is modeled by a change to the upper limit (as
opposed to infinity or the integration limits computed by computational limitations).  Doing this,
however, requires a correction to the calculated probability of failure value.  This correction is
accomplished by changing the upper bound of the numerical integration by dividing the
probability of failure by the area under the stress PDF curve up to the stress truncation level.  In
most cases, this area is very close to 1.

The exact forms of the integration formulae will not be given here for all combinations of stress
and strength PDF; only the case of a lognormal stress PDF combined with a normal strength PDF
will be considered.  For this choice, the PDFs of the two distributions are
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After a change of variables, the resulting equation for probability of failure is

  PF  =  
1

2

1

2
2 0

π
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σ µ
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,

and where the integration limits are

A = - ])(2[2 0Pln π−    and   B = + ])(2[2 0Pln π− ,

in which P0 is normalizing factor which is set to 1 10 40× −  to insure that the integration is
performed over a region which includes all values of the integrand ≥1 10 40× − .

The total number of integrations performed is determined as follows:

Total no. of integrations = [no. of M.C. trials] × [no. of locations] × [no. of failure modes] ×
 [no. of thickness sensitivity values]

A case with either a small number of locations or Monte Carlo trials can be run to assess the
average time taken for each integration.  Then the approximate total amount of time required to
perform larger-scale analyses can be assessed.

Box 30Component Failure Probability (per Location).  For each location, the number of
Monte Carlo simulations usually produces a corresponding number of unique probabilities of
failure.  Since the objective is to get one answer per location, an arithmetic average is used to
determine an average probability of failure for each location.

Box 31Total Structure Failure Probability.  To get a probability of failure for a group of
locations, or for an entire structure, the structural locations are considered to be in series; that is,
failure of any one location will lead to structural failure of the whole assembly.  That is, no load
path redundancy or redistribution is assumed.  This is usually a conservative approach.

As an example, take a system comprised of two independent elements in series, each having a
probability of failure of 1%.  To find the probability of failure of the system, we calculate 1
minus the probability that both elements will survive (i.e., the product of the probabilities of the
survival of each of the two elements), as follows:

 PFTOT  = 1 - (1 - 0.01) × (1 - 0.01)  = 1 - (0.99)(0.99) = 0.0199

Box 32Failure Probability vs. Aircraft Age.  Because of the time dependence of environmental
conditioning of the composite structure and of undetected operational damage, the single-flight
probability of failure could change over time.  To create a curve of SFPF vs. time, the program
must be rerun with the different analysis times as input.
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5.4  ADDITIONAL PROBABILITY CALCULATIONS.

The result from the NGCAD probabilistic methodology is the single-flight probability of failure
(PSF).  Given PSF, the following equation is used to determine the probability of failure (PS) for a
single aircraft during its design lifetime:

PS = 1 - ( )1
1

−
=

∏ PSF
i

K

i
,

where K is the total number of flights during a design lifetime.  If PSFi
is constant (independent of

time), this becomes

PS = 1 - ( )1− PSF

K

i

5.5  DESCRIPTION OF PROGRAM OUTPUT.

Tables 5-4 through 5-6 show examples of program output:  table 5-4 is a probability of failure
summary by location and major structural component; while tables 5-5 and 5-6 summarize the
number of defects chosen via simulation for each major component.

5.5.1  Failure Probability Summary (Table 5-4).

The probability of failure for each major component is obtained by assuming all locations are
independent no load path redundancy.  The component probability of failure is obtained using a
series calculation described above in Box 31, using the failure probabilities of all failure modes
within the components.  Similarly, the probability of failure for the total structure is a series
calculation using the failure probabilities of the components.  In table 5-4, locations are grouped
into high- and low-strain points (from deterministic stress analysis) on the upper and lower skins,
denoted USH and LSH, respectively.

TABLE 5-4.  EXAMPLE PROBABILITY OF FAILURE LISTING

Failure Modes
Loc Compression Strength Tensile Strength Total
Tot 0.471E-09 0.508E-10 0.519E-09
USH 0.468E-09 0.468E-09
LSH 0.508E-10 0.508E-10
USH Compression Strength Tensile Strength Total

1 0.411E-09 0.411E-09
2 0.135E-12 0.135E-12
3 0.109E-10 0.109E-10
4 0.466E-10 0.466E-10
5 0.517E-13 0.517E-13

LSH Compression Strength Tensile Strength Total
6 0.236E-10 0.236E-10
7 0.447E-11 0.447E-11
8 0.923E-11 0.923E-11
9 0.736E-11 0.736E-11

10 0.606E-11 0.606E-11



5-19

The columns contain failure probabilities per failure mode, and the Total column is a series
calculation of the individual failure mode failure probabilities.  That is, we assume each failure
mode to be independent from one another.  At the top of this output file, the total failure
probability for each failure mode is given.  This enables assessment of the relative contribution
of each failure mode to the total failure probability.

5.5.2  Defect Summaries.

The top part of the table 5-5 gives a summary of the total number of defects from all locations,
per failure mode, for each type of defect used.  The Occurred column represents the total number
of occurrences of that defect type from the Poisson distribution model within the Monte Carlo
simulation, while the Used column represents those defects that were actually used to scale the
strength distribution.  The difference in these two values comes from the fact that if several
defect types are chosen within the Monte Carlo trial at a specific location, the effects will not be
compounded; the defect with the most severe effect will be chosen, and the less severe defect
types are ignored.

TABLE 5-5.  MANUFACTURING DEFECT SUMMARY

Compression Strength Tensile Strength
Total Defects Occurred Used Occurred Used

All Locations 9718 9651 7895 7833 1823 1818
   Hole 3476 3469 2517 2511   959   958
   Laminate 3497 3313 3229 3190   125   123
   Impact   548   548   399   399   149   149
   Waviness 1450 1406 1059 1058   349   348
   Tolerance   932   915   691   675   241   240
Upper Skin High Strain 7895 7833 7895 7833
   Hole 2517 2511 2517 2511
   Laminate 3229 3190 3229 3190
   Impact   399   399   399   399
   Waviness 1059 1058 1059 1058
   Tolerance   691   675   691   675
Lower Skin High Strain 1823 1818 1823 1818
   Hole   959   958   959   958
   Laminate   125   123   125   123
   Impact   149   149   149   149
   Waviness   349   348   349   348
   Tolerance   241   240   241   240

The number of defects, per failure mode, are summed from all locations within each major
structural component.  The Total column represents the arithmetic sum of defects from the
failure mode columns.  Note that since the impact defect has the most severe effect, it will be
used every time, as can be seen in the defect numbers.

Similar output shows the operational defects chosen from the simulation.  The layout is similar to
the manufacturing defect summary, where the total number of defects chosen from the Monte
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Carlo simulation are summarized taking into account all locations that define each major
structural component.

Blank entries indicate that the defect type was not specified for that failure mode, while zeroes
(not shown) would indicate that the number of Monte Carlo trials was not enough for the defect
to occur.  From Poisson distribution rates, it is possible (and very important) to determine how
many trials will be needed to ensure each defect (and its effect) is accurately represented in the
simulation.

5.6  EXAMPLE PROBLEM.

The following example problem illustrates the methods used in the NGCAD probabilistic
approach.  Monte Carlo simulation is used to model the effects of gust on the applied stress
distribution and manufacturing defects on the component strength distribution, then numerical
integration is used to calculate the probability of failure for each simulation.

The maximum stress during a single flight for a given aircraft structural component is a random
quantity which follows a normal distribution with a mean of 2000 psi and a standard deviation of
500 psi.  The strength of the component is also a random quantity and follows a normal
distribution with a mean of 4000 psi and a standard deviation of 1000 psi.  There is a 50%
chance that a positive gust will occur during the maximum stress excursion and cause the stress
to increase by 200 psi.  The expected number of undetected manufacturing defects for this
component is 1.  Note that this is a mathematical expectation, not a probability, thus there could
be 0, 1, 2, 3, etc., manufacturing defects.  It is surmised that if at least one defect exists, the basic
strength of the component will be reduced by 20%.

What is the single-flight probability of failure, if failure is defined as the component’s maximum
stress exceeding its strength?

5.6.1  Theoretical Background.

As discussed earlier in this section, the single-flight probability of failure is the product of the
maximum stress per flight probability density, f(s), and the material strength cumulative
probability, G(s), integrated over the region in which f(s) is defined:

SFPF = ∫
Ω f

ds G(s) f(s)

Figure 5-6 shows the PDFs for the applied stress and component strength in units of ksi.  Figure
5-7 shows the applied stress PDF and the component strength CDF.  The CDF is the probability
that the strength is less than the given value, i.e., the area under the PDF from negative infinity to
the given value (hence the term cumulative).  It follows that the CDF is asymptotic to 0 and 1 in
the negative and positive directions, respectively.

Figure 5-8 shows the product of the stress PDF and the strength CDF; the area under this curve is
the probability of failure, thus the product is referred to as the integrand.
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For the case where both the maximum stress per flight and material strength are independently
and normally distributed, the SFPF is straightforward and can be found in any reliability
textbook which addresses the load-strength interference problem:

SFPF = Φ[(µs - µt)/(σs
2 + σt

2)½]  (5-1)

where

Φ    ≡ standard normal cumulative distribution function
            µs, σs ≡ mean, standard deviation of the stress PDF

µt, σt  ≡ mean, standard deviation of the strength PDF

Since a similar derivation of an equation for SFPF is not straightforward for all combinations of
probability distributions, an alternate mathematical derivation is demonstrated for the normal-
normal case, which is representative of the derivation used for the other distribution
combinations.
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Substituting variables, let Z = (s-µs)/σs  ⇒  s = σsZ + µs  ⇒  ds = σsdZ  ⇒  dZ = ds/σs

New integration limits:   s → −∞   ⇒   Z → −∞
    s → +∞   ⇒   Z → +∞

The transformed expression for SFPF is thus:

( )
( ) dZ

Z
ZdZ

Z
Z

t

tss

t

tss ∫∫
∞

∞−

∞

∞−





 −+Φ•= 




 −+Φ• 




−=

σ
µµσφ

σ
µµσ

π
2

21 2

1
exp

2

1
 SFPF (5-2)

where φ ≡ standard normal probability density function.

This formula is used in the NGCAD program to calculate SFPF, where the stress and strength
are normally distributed.  Formulas for combinations of normal, lognormal, and Weibull stress
and strength distributions are similarly derived and used; the resulting equations are listed in
table 3-5.
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In this example, equations 5-1 and 5-2 will be employed separately to attain the identical solution
for SFPF.  A Microsoft EXCEL spreadsheet will also be included to demonstrate trapezoidal
integration and verify the Romberg integration of equation 5-2.

5.6.2  Solution.

In this example, for each Monte Carlo simulation, there are four possible outcomes of the 2
independent events (gust and manufacturing defect) which must be considered in determining the
SFPF:

• No gust, no manufacturing defect
• Gust, no manufacturing defect
• No gust, manufacturing defect
• Gust, manufacturing defect

Each outcome’s probability of occurrence is the product of the probabilities of the independent
events that define the outcome.  The probability of the event gust is 0.5, hence the probability of
the event no gust is also 0.5.  For manufacturing defects, more explanation is required.  Recall
the expected number of defects is 1.  Assuming the occurrence of defects can be modeled as a
Poisson process, the probability of no manufacturing defect is exp(-1) ≈ 0.368, hence the
probability of manufacturing defect (actually 1 or more defects) is 1 - exp(-1) ≈ 0.632.  (Recall
that for this problem, existence of any number of defects reduces the material strength by 20%,
regardless of how many.)

Thus, the outcome probabilities (Pri, i=1 to 4) are:

• No gust, no manufacturing defect:  0.5 × 0.368 = 0.184 = Pr1

• Gust, no manufacturing defect:       0.5 × 0.368 = 0.184 = Pr2

• No gust, manufacturing defect:       0.5 × 0.632 = 0.316 = Pr3

• Gust, manufacturing defect:            0.5 × 0.632 = 0.316 = Pr4

Note that these probabilities sum to 1, as they encompass all possible outcomes.  After
calculating each outcome’s SFPF and weighing it by its probability of occurrence, the sum
constitutes the solution to the problem.  Mathematically,

SFPF = Pr1×SFPF1 + Pr2×SFPF2 + Pr3×SFPF3 + Pr4×SFPF4

We know the Pri probabilities for each scenario; the SFPF can be calculated by using equations 1
or 2.  The use of equation 2 will be demonstrated by running the NGCAD probabilistic analysis
program.

Solution via equation 1:     SFPFi = Φ[(µs - µt)/(σt
2 + σs

2)½]

( ) 09450SFPFPrSFPF ii .=×= ∑
∞+
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Solution via equation 2:  ( ) ( )[ ]∫
+∞

∞−

−+Φ•= dZZZSFPF ttsi σµµσφ /2

Table 5-6 shows the resultant failure probabilities associated with each of the four outcomes.

TABLE 5-6.  FAILURE PROBABILITIES ASSOCIATED WITH OUTCOMES

Outcome (i) µs σs µt σt Pri SFPFi

1 2000 500 4000 1000 0.184 0.0368
2 2200 500 4000 1000 0.184 0.0537
3 2000 500 3200 800 0.316 0.1017
4 2200 500 3200 800 0.316 0.1446

The NGCAD program was run to demonstrate the Monte Carlo simulation integration of
equation 2.  An input file was set up to create basic stress and strength PDFs identical to
Outcome no. 1 above (no gust, no defects ⇒ µs=2000, σs =500, µt = 4000, σt = 1000).

To understand the following steps to create this applied stress input, the reader needs to fully
understand the steps in defining the applied stress distribution, as shown in figure 5-2.  A normal
distribution was input for the nzmax per flight PDF with the mean = 2 and the standard deviation =
0.5.  Then, a stress/nz scale factor of 1000 was forced by setting Design Factor (DF) = 1.5,
Allowable = 9000, Margin of Safety (MS) = 1.0, and the nz corresponding to 100% Design Limit
Stress (nzDLS) = 3.0, as per the relation

Stress/nz = Allowable/[DF(1+MS)]/nzDLS = 9000/1.5[1+1]/3 = 1000

This produces the desired parameters (µs=2000, σs =500) for basic maximum stress per flight
PDF and is verified in the program output (at the end of this example).  The component strength
PDF is input directly.

To include the effects of gust, the input included (1) probability of gust occurring (0.5),
(2) probability of down gust given that gust occurs (0.0, hence ensuring up gust only), and (3) the
probability distribution for the shift in the input nzmax PDF when gust occurs (Uniform[0.2,0.2]).
Based on these inputs and the stress/nz scale factor of 1000, a positive shift of 200 in the stress
PDF will occur when gust is sampled during Monte Carlo simulation (during approximately half
the trials).  To include the effects of undetected manufacturing defects, a manufacturing defect
rate of 1.0 and a strength reduction factor of 0.8 were input.  As described above, there is
~63.2% chance during a given Monte Carlo trial that at least one defect will occur and the basic
material strength PDF will be scaled by 0.8.

Initially, the program was run with only 10 Monte Carlo trials.  With the random number seed
selected, this was enough to demonstrate the numerical integration results for the four possible
outcomes.  Results are summarized in table 5-7.
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TABLE 5-7.  RESULTS CORRESPONDING TO THE FOUR OUTCOMES

Outcome (i) MC Trial No. Fraction of Trials (Fri) SFPFi

1 5 0.1 0.0368
2 1,4 0.2 0.0537
3 2 0.1 0.1017
4 3,6-10 0.6 0.1446

SFPF = Σ(Fri×SFPFi) = 0.1113

Two points are evident from these results.  First, there is excellent agreement between the SFPFi

values here and the those for equation 1, demonstrating the accuracy of Romberg integration
applied to equation 2.  Second, the number of Monte Carlo trials (10) is obviously insufficient to
accurately simulate the individual outcome probabilities.  (Compare Fri values in this table to Pri

values in the previous table.)  More trials are necessary to converge to the “exact” solution
achieved with equation 1.  In fact, convergence becomes evident at approximately 1000 trials as
shown in table 5-8.

TABLE 5-8.  FAILURE PROBABILITIES ASSOCIATED WITH M.C. TRIALS

MC Trials SFPF
10 0.111335
100 0.104170
1000 0.094854

10,000 0.094032
100,000 0.094316
“Exact” 0.094483

Figure 5-9 shows the PDFs describing the maximum stress per flight for the “gust” and “no gust”
cases and the component strength PDFs for the “manufacturing defect” and “no manufacturing
defects” cases.  Figure 5-10 is the integrand per equation 2 for the outcome where neither gust
nor manufacturing defect occur.  Table 5-9 shows a spreadsheet application (using Microsoft
EXCEL software) of the trapezoidal rule to estimate the area under the SFPF integrand curve for
comparison with Romberg integration results from the NGCAD program.  Recall that Romberg
integration is an extended version of the trapezoidal rule.

Appendix A shows the NGCAD program output (including an echo of the input data), with the
number of Monte Carlo trials set to 10.
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TABLE 5-9. TRAPEZOIDAL RULE CALCULATION (NO GUST, NO DEFECT)

PF integrand for Normal-Normal Case

Stress (s) Strength (t)
P1= 2000 4000
P2= 500 1000 Trapezoidal

Z f(Z) Area
-3.0 1.03117E-06
-2.8 2.66736E-06 3.69853E-07
-2.6 6.56713E-06 9.23448E-07
-2.4 1.53896E-05 2.19567E-06
-2.2 3.43277E-05 4.97173E-06
-2.0 7.2886E-05 1.07214E-05
-1.8 0.000147312 2.20198E-05
-1.6 0.000283424 4.30735E-05
-1.4 0.000519109 8.02532E-05
-1.2 0.000905144 0.000142425
-1.0 0.001502561 0.000240771
-0.8 0.002374755 0.000387732
-0.6 0.003573528 0.000594828
-0.4 0.005120207 0.000869373
-0.2 0.006985726 0.001210593
0.0 0.009075962 0.001606169
0.2 0.011229375 0.002030534
0.4 0.013232044 0.002446142
0.6 0.014850298 0.002808234
0.8 0.015874891 0.003072519
1.0 0.016165394 0.003204028
1.2 0.015681827 0.003184722
1.4 0.014493701 0.003017553
1.6 0.012763631 0.002725733
1.8 0.01071086 0.002347449
2.0 0.008565951 0.001927681
2.2 0.006529457 0.001509541
2.4 0.004744401 0.001127386
2.6 0.003286584 0.000803098
2.8 0.002170837 0.000545742
3.0 0.001367392 0.000353823
3.2 0.000821505 0.00021889
3.4 0.000470817 0.000129232
3.6 0.000257452 7.28269E-05
3.8 0.000134346 3.91798E-05
4.0 6.69151E-05 2.01261E-05
4.2 3.18191E-05 9.87342E-06
4.4 1.44482E-05 4.62673E-06
4.6 6.26615E-06 2.07143E-06
4.8 2.59632E-06 8.86247E-07
5.0 1.02801E-06 3.62433E-07

sum (~SFPF) = 0.036819
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6.  BENEFITS OF PROBABILISTIC ANALYSIS.

Uncertainties in the definition of loads, geometry, assembly procedures, manufacturing
processes, engineering models, material properties, and maintenance or operational environments
as well as uncertainties in testing lead to uncertainty in structural design and ultimately safety.
There have been many probabilistic analysis tools developed, but in general they are difficult for
nonstatistical experts to understand and implement and have not been universally accepted by the
engineering community.  This does not mean that probabilistic analysis methods are without
merit.  There is ongoing effort to refine the methods and improve the user-friendliness and
flexibility of associated computer programs.

A list of benefits was obtained by reviewing nearly 100 technical reports on probabilistic
methods published through 1996; these were written by both developers and application
engineers.  The following list is the authors’ consensus of perceived benefits:

a. Enables quantification of the design risk or reliability.  The classical deterministic
analysis approach accounts for design uncertainties via an uncertainty factor multiplying
the maximum expected stress.  Probabilistic analysis, on the other hand, models most or
all design parameters as being variable and combined with established structural analysis,
yields a quantitative measure of reliability.  This is obviously advantageous if reliability
is specified as a basic contractual requirement.  NASA design requirements for future
space vehicles and structures are expected to be specified in reliability terms [93].

There have been structural reliability requirements imposed on military aircraft in the
past, but the reliability values generated from such analyses are generally based on
historical data from field maintenance data on aircraft with similar design features.  A
simplified, constant failure rate math model is usually employed, similar to established
reliability analysis methods for avionics and electrical components.  The techniques used
to assess structural reliability are typically not tied to structural analysis methods.
Employing probabilistic methods will aid reliability engineers in improving their
analyses.

b. Identifies regions of high risk in a design.  The total structural risk is typically a function
of a series of reliability values at specific locations within the structure.  Should a
particular region be shown to drive the overall risk, measures can be taken to reduce that
risk via design change, and/or manufacturing inspection procedures can be implemented
to minimize the occurrence of defects in critical zones.

c. Allows determination of design variable importance to reliability.  The reports were
unanimous in identifying this benefit of probabilistic analysis.  A powerful attribute of
probabilistic analysis is the information gained in understanding the interactions, effects,
and sensitivities of design variables.  This information can be used to optimize testing for
various purposes and can highlight the need to tighten (or relax) design or manufacturing
tolerances.  For instance, if it was shown that minor variation in stringer thickness had a
major effect on resultant stress, tightening tolerances may be advantageous.  Most
probabilistic analysis software provides an output of design parameter sensitivity.
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d. Provides a means to compare competing designs.  In addition to comparing overall
reliability values of competing designs, the probabilistic analysis can point out specific
features or locations in which the reliability significantly differs among designs.  This can
increase the understanding of the structure’s behavior and lead to design improvements.

e. Provides a metric for design optimization.  Aerospace structures are operated in harsh
and uncertain environments and yet must meet minimum weight, high performance, and
stringent reliability requirements.  Safety must be maintained at a high level.  Reduced
weight tends to reduce reliability and therefore must be implemented judiciously.
Probabilistic analysis provides the measure of structural reliability, which can then be
optimized by changing certain design variables.  That is, design parameters are varied to
minimize weight, but the overall reliability must meet a specified level.

f. Can reduce unnecessary conservatism.  This is particularly true with composite aircraft
structure design, which is governed by compounded conservatism illustrated by the
following criteria:

 
• Worst case temperature and moisture
• Worst case damage, undetected
• Reduced design allowables

This approach translates to a design philosophy that assumes the structure will
simultaneously experience the worst case temperature, moisture, and damage conditions
and will be composed of low-strength material.  These worst case assumptions often lead
to an excessively conservative design.  The probabilistic analysis approach accounts for
the expected occurrence of such events and combines them statistically.

g. Provides a means to establish optimum inspection intervals.  The worldwide trend of
operating military and commercial aircraft beyond their original design life has
introduced new structural integrity concerns arising from aging.  This calls for extensive
inspection.  The main motivation for inspection is uncertainty arising from load
predictions, analysis models, and material parameters.  Probabilistic analysis treats
uncertainties in a consistent manner, modeling parameters such as initial flaw size, load
spectrum variation, crack growth model parameters and crack detection probability, and
can be used to optimize the time interval for crack detection in metals.

Note:  Establishing inspection intervals for composite material designs is driven by
different phenomena than crack growth.  Various approaches have been applied to model
delamination growth as a function of time (cycles).  Delamination growth is a very
complex failure mechanism and is highly dependent on the structural geometry, making
these theories difficult to apply.

h. Provides a means to establish warranties and spare parts policy.  Probabilistic analysis
provides a means to estimate the frequency of failures and thus can provide valuable
input to the warranting of parts.  Associated with this is the estimate of the number of
spares needed.
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Incorporating probabilistic methods eventually leads to a better design approach in that the
engineer develops a more comprehensive understanding of the problem encompassing many
disciplines.  The probabilistic evaluation gives the designer an idea of the inherent risk, but just
as important, provides a means of evaluating design parameter sensitivities.  In general,
probabilistic methods require more detailed analysis, which can ultimately lead to an improved,
more efficient design.
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7.  GROUND RULES, CONSIDERATIONS, AND LIMITATIONS.

The goal of a probabilistic engineering analysis applied to an aerospace structure is to define
accurately the reliability of the design, expressed in terms of a per flight or per lifetime basis.
Such knowledge would be invaluable to the designer, producers, operators, and certifying
agencies of aerospace structures.  This goal is often very difficult to achieve because of the
number of potential variables involved in the calculations.

Some of the reasons for this difficulty are discussed in this section.  These discussions are not
meant to discount the potential value of probabilistic methods, nor to discourage the continued
development of these tools, but to be realistic about the expectations and identify opportunities
for continued effort.

A list of ground rules, considerations and limitations for the application of probabilistic analysis
was obtained by reviewing nearly 100 technical papers on probabilistic methods published
through 1996; these were written by both developers and application engineers.  The following
list, in no particular order, is the authors’ consensus of ground rules, considerations, and
limitations:

a. Knowledge of engineering and statistical theory required.  Currently, to use probabilistic
methods, a fundamental knowledge of probability theory and statistics is required on the
part of the application engineer.  More advanced statistical knowledge is highly desirable
because the underlying probability theory of many of these methods is complex.  Of
equal or greater importance than statistical knowledge is that application engineers fully
understand structural design concepts.  The optimal application engineer is an
experienced structural analyst/design engineer with a good understanding of statistics.

An alternate, though less desirable approach is to form a team consisting of structural and
statistics experts.  Crucial aspects of each field would be discussed by the team and
potential design implications researched.

b. Lack of sufficient statistical data.  Probabilistic analysis typically uses interpolations,
extrapolations, small data samples, and therefore has inherent error.  This can lead to an
analysis full of assumptions about the nature of design variables and subsequently
impacts analysis accuracy.

Some authors assert that small amounts of data can be used to perform the probabilistic
analysis.  Should the analysis show a design parameter to be a driver, it is contended that
additional testing can be specified to better characterize the variable.  This is idealistic; in
the real world, external factors force compressed development schedules, and cost is
always an issue.  Thus additional testing must be justified by the increased benefits
obtained.  A method to help quantify uncertainties of probabilistic analysis and to
rationally assess the risk of accepting the results is to establish confidence bounds for the
reliability values generated.

c. Legal issues.  Legal implications of probabilistic methods are unclear at this time.  The
risk level associated with deterministic design has never been quantified, even though it
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exists.  As such the establishment of a threshold value for a socially acceptable risk level
has been avoided.  Probabilistically designed products require establishment of
reliability/failure criterion and thus the acknowledgment of the existence of some finite
failure probability, which could have a myriad of associated legal ramifications.
Governmental certifying agencies along with producers will be required to establish
minimum design reliability values.

d. Additional time and resources required.  Significant time is needed to build the
probabilistic models, especially if integrated with existing structural analyses, which
themselves are very time consuming.  Depending on the type of analysis method used
(described in section 3), running the probabilistic analysis may require significant
computer resources.

e. Design certification.  Ideally, reliability analysis values should be verified by hardware
demonstrations.  Currently, there is no commonly accepted method established to certify
an aerospace structure, given it has been designed to a certain reliability level.  How does
one demonstrate a structural probability of failure of 1 x 10-9?  Most authors agree that
this issue is a major roadblock to incorporation of the probabilistic methodology.  This is
why many suggest the best use for probabilistic analysis is as a tool for identifying design
parameter sensitivities and contribution to reliability for proposed or existing designs.

f. Accounting for the unknowns.  Because an uncertainty factor may not be used in
probabilistic analysis, the application engineer must be certain he has accounted for all
scenarios, variables, and interaction of failure modes.  The purpose of the uncertainty
factor associated with deterministic methods is to account for an under-strength airframe
as well as inadvertent overloads caused by load and strength variation as well as non-
structural factors (to a certain extent) such as pilot error or a freak maintenance accident.
Currently no known probabilistic structural analysis methods inherently take into account
nonstructural contributions to failure.  An analogous approach should be developed for
probabilistic methods.  Chamis [94] wrote a paper addressing the human factor in
structural reliability.

In addition, significant weight growth typically occurs over the lifetime of an aircraft due
to design modifications and avionics upgrades.  This issue requires attention when
designing a structure initially to a target reliability level.  That is, it may be prudent to
anticipate weight growth and design to a value greater than the target reliability value to
account for expected reliability degradation due to weight growth.

g. Tail Sensitivity.  When predictions of structural behavior are required in the high
reliability range (approx. 0.99999 or greater), it is necessary to use parametric modeling
methods since sufficiently large data sets are usually not available.  This involves fitting
parametric functions to the data and choosing the one with the best fit.  These parametric
functions permit extrapolation from available data to ranges outside the data, but if the
probability of failure is extremely small, this extrapolation will be substantial.  Slight
deviation from the assumed model in tail regions can have a dramatic effect on high
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reliability estimates [95].  The estimated reliability therefore depends strongly on the
parametric function.

With respect to the use of parametric models, one well known statistician [96] wrote “all
models are wrong, but some are useful,” meaning that no parametric statistical model
should be accepted uncritically.  Breiman [97] writes “the probability of failure Pf = 1 x
10-6 has an Alice in Wonderland flavor and should be banned from nonfiction literature.”
Obviously this is a well-known issue in probabilistic analysis.  It should be the obligation
of the analyst to investigate consequences of departures from the parametric model
employed.

h. Different approaches available.  As expounded in section 3, there are competing
techniques for performing probabilistic structural analyses, and due to technique or model
assumptions, they often yield different results.  Each approach has its advantages as well
as shortcomings as far as accuracy, run time, and ease of implementation.  Reference 98
provides an excellent discussion of these issues associated with the commonly used
probabilistic methods.  Obviously, accuracy should be the primary goal and compromised
only if run time and implementation hardships are encountered.  Many problems with
computational speed have been dealt with due to enormous increases available with
parallel processing on workstations, enabling Monte Carlo simulation methods to become
more feasible.

i. Existing failure mode model must exist.  The first step in probabilistic analysis is to
identify all the modes of failure, ways in which the structure might fail to fulfill its
intended purpose.  Since probabilistic methods do not provide this identification, an
existing method to model the failure mode must be used.  For instance, modeling
fracture, fatigue, flaw growth, etc., can be accomplished using existing structural models
and building a probabilistic framework around them.  Probabilistic analysis, therefore,
does not introduce any new structural analysis techniques but depends heavily on using
state-of-the-art methods; they are at the heart of the analysis.

j. Modeling the system.  Component reliability in its simplest form addresses individual,
independent failure modes.  In reality, multiple failure modes or sites as well as multiple
interacting failure modes most likely are involved in structural failure.  Furthermore,
structural redundancy and damage progression may also be important.  These issues bring
in the need to model system reliability, especially if dependence exists.  Several research
papers [99 through 101] have focused on probabilistic methods to model system
reliability, simulating a sequence or interaction of individual component failure modes.

In summary, probabilistic analysis methods, to be useful, must be embraced by the design and
analysis engineering community.  They cannot remain in a research team project with an
associated aura of statistical mystique, with the rest of the engineering department left to be
impressed with the complex math and promises, yet uninterested because there is nothing they
can experiment with.  A user-friendly and flexible application tool must be provided to
engineers, i.e., something they can experiment with on a limited scale, for probabilistic methods
to advance outside the research arena.
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In addition, recognition of the value of probabilistic methods by academia and inclusion of
engineering curriculum based on fundamental statistical and probabilistic principles would help
facilitate long-term growth of this discipline.  It will be of great help if future aerospace
engineers entering the work force are familiar with fundamental statistical and probabilistic
principles.  Also of help would be the establishment of documented, standardized probabilistic
analysis procedures to uniformly guide engineers.
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APPENDIX ANGCAD PROGRAM OUTPUT

See discussion in section 5.

Northrop Grumman Proprietary
 Probabilistic Design - Monte - Version: 16-JUL-1997 at 11:00
 Run date: 16-SEP-1997 14:57:34
  *** MONTE OUTPUT FILE ***
 Echoing Input Data:
 J.D. Narciso
 Example Problem #1 - Normal/Normal, Gust and Manufacturing defects
 9/16/97

========+=========+=========+=========+=========+=========+=========+========
 01   Main counters
 -------+---------+---------+---------+---------+---------+---------+--------
        1  Number of locations
        1  Number of thickness sensitivities
    1   1  Beginning and Ending Thickness sensitivities
        6  Number of failure modes
       10  Number of Monte Carlo iterations

========+=========+=========+=========+=========+=========+=========+========
 02   Flight and Lifetime Information
 -------+---------+---------+---------+---------+---------+---------+--------
  30.000000  Analysis: Start time (in years)
  30.000000  Analysis: End   time (in years)
   1000.000  Average number of flight hours per year
      1.000  Average number of hours per flight

========+=========+=========+=========+=========+=========+=========+========
 03   Output Generation Control Flags
 -------+---------+---------+---------+---------+---------+---------+--------
 Detailed Output Specifications:
 Y         Output details for each PF computed
 Y         Output details for each AVEPF computed

 Graphics Output Indicator Flags:
        0  Count of specification lines
 Location Sets:  Count =   1
 All: Count of range specification lines =   1
      LOC:   1-->  1

========+=========+=========+=========+=========+=========+=========+========
 04   Miscellaneous Information
 -------+---------+---------+---------+---------+---------+---------+--------
 PROG_VER = NEW
  1234567  Random number generator seed
 N         Truncation is NOT being used
   1.0000  Averaging class value (for AVEPF computations)
   1.5000  Design Factor
        1  Major Aircraft Components
       ALL_LOC   Name   of Major Aircraft Component    1
  .10000000E+03  Weight of Major Aircraft Component    1
       001  001  Location range
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 =======+=========+=========+=========+=========+=========+=========+=======
 05   Location Information
 -------+---------+---------+---------+---------+---------+---------+-------
Baseline Thickness for each Location: Baseline Thickness =      .100000 :
Locations (  1 to   1)
 Area for each Location:
 Area =     1.000000 :   Locations (  1 to   1)

========+=========+=========+=========+=========+=========+=========+========
 06   Thickness Sensitivity Information
 -------+---------+---------+---------+---------+---------+---------+--------
  100.00

========+=========+=========+=========+=========+=========+=========+========
 07   Failure Mode Information
 -------+---------+---------+---------+---------+---------+---------+--------
 Count of Failure Mode Usage Definition Blocks =   1
 Block   1 : Usage flags =  N N N N N Y
 Range:  Loc = (  1 to   1)
 Failure Mode Type Codes:
 Failure Mode 1:  CM
 Failure Mode 2:  SM
 Failure Mode 3:  TM
 Failure Mode 4:  CS
 Failure Mode 5:  SS
 Failure Mode 6:  TS

=========+=========+=========+=========+=========+=========+========+========
 08   Margins of Safety
 --------+---------+---------+---------+---------+---------+--------+--------
 Baseline MOS =     1.000000: Loc (  1 to   1)  FM 1-6( 0 0 0 0 0 1)
 Alternate Margins of Safety:
 None are used

=========+=========+=========+=========+=========+=========+=========+=======
 09   Material Strength Allowables
 --------+---------+---------+---------+---------+---------+---------+-------
 Material Strength Allowables:
 Allowable =  9000.000000 :   Loc (  1 to   1)   FM 1-6(  0  0  0  0  0  1)

=========+=========+=========+=========+=========+=========+=========+=======
 10   Operation STRESS Distribution Information
 --------+---------+---------+---------+---------+---------+---------+-------
 Count of Operation Distribution Definition Blocks =   1
 Block   1 :  Maximum-Nz PDF and related data
 NORMAL    : Mean =     2.00000    Sigma =      .50000
   3.0000  Number of Gs equal to 100% DLS
 Count of range specification lines =   1
 Range:   Locations (  1 to   1)   Failure Modes 1-6(  0  0  0  0  0  1)

=========+=========+=========+=========+=========+=========+=========+=======
 11   Material STRENGTH Distribution Information
 --------+---------+---------+---------+---------+---------+---------+-------
 Count of Material Strength Distribution Definition Blocks =   1
 Block   1
 NORMAL    : Mean =  4000.00000    Sigma =  1000.00000
 Count of range specification lines =   1
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 Range:   Locations (  1 to   1)   Failure Modes 1-6(  0  0  0  0  0  1)
 Material Strength Knock-down Factors:
 Strength Knockdown Factor =     1.000000 : Loc (  1 to   1)   FM 1-6(  0  0
0  0  0  1)

=========+=========+=========+=========+=========+=========+=========+=======
 14   Gust Effects Information
 --------+---------+---------+---------+---------+---------+---------+-------
 "Gust" Usage Flag      : Y
 Probability of Gust Occurring  :  .50000
 Probability of Down vs Up Gust:  .00000
 UNIFORM   : [        .200000,       .200000]
 UNIFORM   : [        .200000,       .200000]

=========+=========+=========+=========+=========+=========+=========+=======
 15   Manufacturing Defects Information
 --------+---------+---------+---------+---------+---------+---------+-------
 Manufacturing Defects Usage Flag: Y
 Count of Manufacturing Defect Types =  1
 Type  1: Delam
 Generic Manufacturing Defect Rates:
 Loc   1 to   1:  Rates =   1.00000
 Manufacturing Defect Reduction Factors:
 Failure Mode 1(CM)  :  .000000
 Failure Mode 2(SM)  :  .000000
 Failure Mode 3(TM)  :  .000000
 Failure Mode 4(CS)  :  .000000
 Failure Mode 5(SS)  :  .000000
 Failure Mode 6(TS)  :  .800000

========+=========+=========+=========+=========+=========+=========+========
 18   OTHER Mandatory Distributions
 -------+---------+---------+---------+---------+---------+---------+--------
 Count of Skin/Temp Distribution Definition Blocks =   1
 Block   1
 DISCRETE  : Beg Index =     1    End Index =     2    Interpolation =0
       1)     -65.000000         .500000    CumVal:  .50000
       2)     160.000000         .500000    CumVal: 1.00000
 Count of range specification lines =   1
 Range:   Locations (  1 to   1)
 Average Moisture Content % Distribution:
  Assumed distribution type = TRIFLEX
  Min, Max, Rho:   0.000000000000000E+000        1.000000000000000
   1.000000000000000E-001

=========+=========+=========+=========+=========+=========+=========+=======
 19   Risk Driver Analysis
 --------+---------+---------+---------+---------+---------+---------+-------
 PERFORM-RISK-ANALYSIS        0
 PRINT-ALL                    0
 PRINT-RATIO                  0
 GUST                         0
 TEMPERATURE/MOISTURE         0
 MFG-DEFECTS                  0
 OPR-DEFECTS                  0
 END
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=========+=========+=========+=========+=========+=========+=========+=======
 20   Declaration of Effects Used
 --------+---------+---------+---------+---------+---------+---------+-------
 GUST                         1
 TEMPERATURE/MOISTURE         0
 MFG-DEFECTS                  1
 OPR-DEFECTS                  0
 END

=========+=========+=========+=========+=========+=========+=========+=======
 00   END OF FILE
 --------+---------+---------+---------+---------+---------+---------+-------

 Data from Input File Successfully Retrieved:
 No Errors Detected
 Gust is on  (per input data)
 Temperature/Moisture is off (per input data)
 Mfg Defects are on  (per input data)
 Opr Defects are off (per input data)
 ### No graphics data will be saved ###

 Pre-Computing for Locations ...

 Sensitivity(  1) = 100.0%   Location(  1) [Thk=  .1000]   Failure Mode(6) =
TS
 MOS(K,J) for output reporting only =       1.00000000
 >>> THICKNESS  1    LOCATION   1    FAILURE MODE 6"TS"    MCI      1
 STRENGTH: NORMAL    :    4000.00000   1000.00000       .00000       .00000
 STRESS  : NORMAL    :    2000.00000    500.00000       .00000       .00000
 DN-GUST: UNIFORM   :   200.0000000  200.0000000     .0000000     .0000000
 UP-GUST: UNIFORM   :   200.0000000  200.0000000     .0000000     .0000000
 Iteration      1):    Time = 360.0    Temp = -65.0
 Event type = GUST   : SHIFT =    200.00000
 STRESS  : NORMAL    :    2200.00000    500.00000       .00000       .00000
  Mfg Defect Scale Factor =        1.000000000000000
 Event type = DEFECT: SCALE =      1.00000
 STRENGTH: NORMAL    :    4000.00000   1000.00000       .00000       .00000
 Integration Limits  : ILA =  -.14915625E+02    ILB =   .13504404E+02
 Iteration      1)   :  PF = .5370230737E-01

 >>> THICKNESS  1    LOCATION   1    FAILURE MODE 6"TS"    MCI      2
 STRENGTH: NORMAL    :    4000.00000   1000.00000       .00000       .00000
 STRESS  : NORMAL    :    2000.00000    500.00000       .00000       .00000
 DN-GUST: UNIFORM   :   200.0000000  200.0000000     .0000000     .0000000
 UP-GUST: UNIFORM   :   200.0000000  200.0000000     .0000000     .0000000
 Iteration      2):    Time = 360.0    Temp = 160.0
 Event type = GUST   : SHIFT =       .00000
 STRESS  : NORMAL    :    2000.00000    500.00000       .00000       .00000
  Mfg Defect Scale Factor =   8.000000000000000E-001
 Event type = DEFECT: SCALE =       .80000
 STRENGTH: NORMAL    :    3200.00000    800.00000       .00000       .00000
 Integration Limits  : ILA =  -.12412500E+02    ILB =   .13504404E+02
 Iteration      2)   :  PF = .1016870095E+00

>>> THICKNESS  1    LOCATION   1    FAILURE MODE 6"TS"    MCI      3
 STRENGTH: NORMAL    :    4000.00000   1000.00000       .00000       .00000
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 STRESS  : NORMAL    :    2000.00000    500.00000       .00000       .00000
 DN-GUST: UNIFORM   :   200.0000000  200.0000000     .0000000     .0000000
 UP-GUST: UNIFORM   :   200.0000000  200.0000000     .0000000     .0000000
 Iteration      3):    Time = 360.0    Temp = -65.0
 Event type = GUST   : SHIFT =    200.00000
 STRESS  : NORMAL    :    2200.00000    500.00000       .00000       .00000
  Mfg Defect Scale Factor =   8.000000000000000E-001
 Event type = DEFECT: SCALE =       .80000
 STRENGTH: NORMAL    :    3200.00000    800.00000       .00000       .00000
 Integration Limits  : ILA =  -.12812500E+02    ILB =   .13504404E+02
 Iteration      3)   :  PF = .1445727829E+00

 >>> THICKNESS  1    LOCATION   1    FAILURE MODE 6"TS"    MCI      4
 STRENGTH: NORMAL    :    4000.00000   1000.00000       .00000       .00000
 STRESS  : NORMAL    :    2000.00000    500.00000       .00000       .00000
 DN-GUST: UNIFORM   :   200.0000000  200.0000000     .0000000     .0000000
 UP-GUST: UNIFORM   :   200.0000000  200.0000000     .0000000     .0000000
 Iteration      4):    Time = 360.0    Temp = 160.0
 Event type = GUST   : SHIFT =    200.00000
 STRESS  : NORMAL    :    2200.00000    500.00000       .00000       .00000
  Mfg Defect Scale Factor =        1.000000000000000
 Event type = DEFECT: SCALE =      1.00000
 STRENGTH: NORMAL    :    4000.00000   1000.00000       .00000       .00000
 Integration Limits  : ILA =  -.14915625E+02    ILB =   .13504404E+02
 Iteration      4)   :  PF = .5370230737E-01

 >>> THICKNESS  1    LOCATION   1    FAILURE MODE 6"TS"    MCI      5
 STRENGTH: NORMAL    :    4000.00000   1000.00000       .00000       .00000
 STRESS  : NORMAL    :    2000.00000    500.00000       .00000       .00000
 DN-GUST: UNIFORM   :   200.0000000  200.0000000     .0000000     .0000000
 UP-GUST: UNIFORM   :   200.0000000  200.0000000     .0000000     .0000000
 Iteration      5):    Time = 360.0    Temp = -65.0
 Event type = GUST   : SHIFT =       .00000
 STRESS  : NORMAL    :    2000.00000    500.00000       .00000       .00000
  Mfg Defect Scale Factor =        1.000000000000000
 Event type = DEFECT: SCALE =      1.00000
 STRENGTH: NORMAL    :    4000.00000   1000.00000       .00000       .00000
 Integration Limits  : ILA =  -.14515625E+02    ILB =   .13504404E+02
 Iteration      5)   :  PF = .3681912260E-01

 >>> THICKNESS  1    LOCATION   1    FAILURE MODE 6"TS"    MCI      6
 STRENGTH: NORMAL    :    4000.00000   1000.00000       .00000       .00000
 STRESS  : NORMAL    :    2000.00000    500.00000       .00000       .00000
 DN-GUST: UNIFORM    :   200.0000000  200.0000000     .0000000     .0000000
 UP-GUST: UNIFORM    :   200.0000000  200.0000000     .0000000     .0000000
 Iteration      6):    Time = 360.0    Temp = 160.0
 Event type = GUST   : SHIFT =    200.00000
 STRESS  : NORMAL    :    2200.00000    500.00000       .00000       .00000
  Mfg Defect Scale Factor =   8.000000000000000E-001
 Event type = DEFECT: SCALE =       .80000
 STRENGTH: NORMAL    :    3200.00000    800.00000       .00000       .00000
 Integration Limits  : ILA =  -.12812500E+02    ILB =   .13504404E+02
 Iteration      6)   :  PF = .1445727829E+00

>>> THICKNESS  1    LOCATION   1    FAILURE MODE 6"TS"    MCI      7
 STRENGTH: NORMAL    :    4000.00000   1000.00000       .00000       .00000
 STRESS  : NORMAL    :    2000.00000    500.00000       .00000       .00000
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 DN-GUST: UNIFORM   :   200.0000000  200.0000000     .0000000     .0000000
 UP-GUST: UNIFORM   :   200.0000000  200.0000000     .0000000     .0000000
 Iteration      7):    Time = 360.0    Temp = -65.0
 Event type = GUST   : SHIFT =    200.00000
 STRESS  : NORMAL    :    2200.00000    500.00000       .00000       .00000
  Mfg Defect Scale Factor =   8.000000000000000E-001
 Event type = DEFECT: SCALE =       .80000
 STRENGTH: NORMAL    :    3200.00000    800.00000       .00000       .00000
 Integration Limits  : ILA =  -.12812500E+02    ILB =   .13504404E+02
 Iteration      7)   :  PF = .1445727829E+00

>>> THICKNESS  1    LOCATION   1    FAILURE MODE 6"TS"    MCI      8
 STRENGTH: NORMAL    :   4000.00000    1000.00000       .00000       .00000
 STRESS  : NORMAL    :   2000.00000     500.00000       .00000       .00000
 DN-GUST: UNIFORM    :  200.0000000   200.0000000     .0000000     .0000000
 UP-GUST: UNIFORM    :  200.0000000   200.0000000     .0000000     .0000000
 Iteration      8):    Time = 360.0    Temp = -65.0
 Event type = GUST   : SHIFT =    200.00000
 STRESS  : NORMAL    :    2200.00000    500.00000       .00000       .00000
  Mfg Defect Scale Factor =   8.000000000000000E-001
 Event type = DEFECT: SCALE =       .80000
 STRENGTH: NORMAL    :    3200.00000    800.00000       .00000       .00000
 Integration Limits  : ILA =  -.12812500E+02    ILB =   .13504404E+02
 Iteration      8)   :  PF = .1445727829E+00

 >>> THICKNESS  1    LOCATION   1    FAILURE MODE 6"TS"    MCI      9
 STRENGTH: NORMAL    :   4000.00000   1000.00000       .00000       .00000
 STRESS  : NORMAL    :   2000.00000    500.00000       .00000       .00000
 DN-GUST: UNIFORM    :  200.0000000  200.0000000     .0000000     .0000000
 UP-GUST: UNIFORM    :  200.0000000  200.0000000     .0000000     .0000000
 Iteration      9):    Time = 360.0    Temp = 160.0
 Event type = GUST   : SHIFT =    200.00000
 STRESS  : NORMAL    :    2200.00000    500.00000       .00000       .00000
  Mfg Defect Scale Factor =   8.000000000000000E-001
 Event type = DEFECT: SCALE =       .80000
 STRENGTH: NORMAL    :    3200.00000    800.00000       .00000       .00000
 Integration Limits  : ILA =  -.12812500E+02    ILB =   .13504404E+02
 Iteration      9)   :  PF = .1445727829E+00

 >>> THICKNESS  1    LOCATION   1    FAILURE MODE 6"TS"    MCI     10
 STRENGTH: NORMAL    :    4000.00000   1000.00000       .00000       .00000
 STRESS  : NORMAL    :    2000.00000    500.00000       .00000       .00000
 DN-GUST: UNIFORM    :   200.0000000  200.0000000     .0000000     .0000000
 UP-GUST: UNIFORM    :   200.0000000  200.0000000     .0000000     .0000000
 Iteration     10):    Time = 360.0    Temp = 160.0
 Event type = GUST   : SHIFT =    200.00000
 STRESS  : NORMAL    :    2200.00000    500.00000       .00000       .00000
  Mfg Defect Scale Factor =   8.000000000000000E-001
 Event type = DEFECT: SCALE =       .80000
 STRENGTH: NORMAL    :    3200.00000    800.00000       .00000       .00000
 Integration Limits  : ILA =  -.12812500E+02    ILB =   .13504404E+02
 Iteration     10)   :  PF = .1445727829E+00

 Statistics Summary for Monte Carlo Iterations -
 Averages -->  :    Time = 360.0    Temp =  47.5    PF = .1113347444E+00
 Std Devs -->  :    Time =    .0    Temp = 118.6    PF = .4584667141E-01
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Probability of Failure:

                         Thickness Adjustment  1 = 100.0 Percent

     |  Failure Modes
 Loc |      CM         SM         TM         CS         SS         TS   Total
 --- |  --------  --------  --------  -------- ---------  -------- ----------
 Tot   .000000E+00 .000000E+00 .000000E+00 .000000E+00 .000000E+00
.111335E+00 .111335E+00
 --- |  --------  --------  --------  -------- ---------  -------- ----------
 All |                                                .111335E+00 .111335E+00
 --- |  --------  --------  --------  -------- --------- --------- ----------
 All |      CM        SM          TM         CS         SS         TS   Total
 --- |  --------  --------  --------  -------- ---------  -------- ----------
   1 |                                                 .11335E+00 .111335E+00

Summary of Manufacturing Defects for Thickness Adjustment  1:  100.0 Percent

 (Occurred & Used)

            |  Total  |   CM   |   SM   |   TM    |   CS   |   SS   |     TS
 -----------|---------|--------|--------|---------|--------|--------|--------
-
 ALL LOCs   | 7    7  |        |        |         |        |        | 7     7
   Delam    | 7    7  |        |        |         |        |        | 7     7
 -----------|---------|--------|--------|---------|--------|--------|--------
-
 All        | 7    7  |        |        |         |        |        | 7     7
   Delam    | 7    7  |        |        |         |        |        | 7     7
 -----------|---------|--------|--------|---------|--------|--------|--------

 Count of integrations =         10
_

 ============================================================================
 Failure Mode "TS"      Thickness =   .1000000      Location  =    1
 The number of Monte Carlo loop iterations =     10
 The average time        =   360.0000
 The average temperature =    47.5000
 The average probability of failure =  .11133474444779E+00
 Manufacturing Defects:
   Defect Type  R-factor  Occurred      Used
 1)   Delam         .800         7         7
 Operational Defects:
   Defect Type  R-factor  Occurred      Used

 *** MONTE OUTPUT: END-OF-FILE ***
 Elapsed time for this run is       .0 minutes.
 Grand total elapsed time for this run is       .0 minutes.
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